KOLLOKASYON SONLU ELEMAN YÖNTEMİ İLE MKdV DENKLEMİNİN SAYISAL ÇÖZÜMLERİ

Bu çalışmada, modifiye edilmiş Korteweg-de Vries (MKdV) denkleminin sayısal çözümleri septik B-spline kollokasyon sonlu eleman yöntemi kullanılarak elde edilmiştir. Önerilen sayısal algoritmanın doğruluğu, tek soliton dalga, iki ve üç soliton dalganın girişimi gibi üç test probleminin uygulanması ile kontrol edilmiştir. Zamana bağlı Crank Nicolson yaklaşımına dayanan sayısal algoritmamız şartsız olarak kararlıdır. Yeni uygulanan yöntemin performansını kontrol etmek için L2, Lsonsuz , hata normları ile I1,I2 , I3 ve I4 değişmezlerinin değerleri hesaplanmıştır. Elde edilen sayısal sonuçlar literatürde bulunan diğer sonuçlarla karşılaştırılmıştır.

NUMERICAL SOLUTIONS OF THE MKdV EQUATION VIA COLLOCATION FINITE ELEMENT METHOD

In this paper, we have obtained numerical solutions of the modified Korteweg-de Vries (MKdV) equation by using septic B-spline collocation finite element method. The suggested numerical algorithm is controlled by applying three test problems including; single soliton wave, interaction of two and three soliton waves. Our numerical algorithm, attributed to a Crank Nicolson approximation in time, is unconditionally stable. To control the performance of the newly applied method, the error norms L2 ,Lsonsuz and invariants I1 ,I2 ,I3, and I4 have been calculated. The obtained numerical results are compared with some of those available in the literature.

___

  • [1] Korteweg D J and G de Vries. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary wave. Philosophical Magazine 1895; 39: 422-443.
  • [2] Zabusky N J. A synergetic approach to problem of nonlinear dispersive wave propagation and interaction, in: W. Ames (Ed.). Proc. Symp. Nonlinear Partial Dif. Equations, Academic Press 1967; 223-258.
  • [3] Fornberg B and Whitham G B. A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. Roy. Soc 1978; 289: 373-404.
  • [4] Zabusky N J and Kruskal M D. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett 1965; 15 (6): 240-243.
  • [5] Gardner C S, Green J M, Kruskal M D and Miura R M. Method for solving Korteweg- de Vries equation. Phys. Rev 1967; 19: 1095.
  • [6] Goda K. On instability of some finite difference schemes for Korteweg- de Vries Equation. J.Phys. Soc. Japan 1975; 39: 229-236.
  • [7] Vliengenthart A C. On finite difference methods for the Korteweg-de Vries equation. J. Eng. Math 1971; 5: 137-155.
  • [8] Soliman A A. Collocation solution of the Korteweg-De Vries equation using septic splines. Int. J. Comput. Math 2004; 81: 325-331.
  • [9] D. Irk, Dağ I. and Saka B. A small time solutions for the Korteweg-de Vries equation using spline approximation. Appl. Math. Comput 2006; 173 (2): 834-846.
  • [10] Canıvar A, Sarı M and Dağ I., A Taylor-Galerkin _nite element method for the KdV equation using cubic B-splines. Physica B 2010; 405: 3376-3383.
  • [11] Korkmaz A. Numerical algorithms for solutions of Korteweg-de Vries Equation. Numer. Meth. Part. D E 2010; 26(6): 1504-1521.
  • [12] Ersoy O and Dağ I. Cubic B-Spline Algorithm for Korteweg-de Vries Equation. Advances in Numerical Analysis 2015; 2015: 1-8.
  • [13] Aksan E N and Ozdes A. Numerical solution of Korteweg-de Vries equation by Galerkin B-spline finite element method. Applied Mathematics and Computation 2006; 175: 1256-1265.
  • [14] Irk D. Quintic B-spline Galerkin method for the KdV equation, Anadolu University Journal of Science and Technology B- Theoritical Sciences 2017; 5(2): 111-119.
  • [15] O Ersoy and Dag I. The Exponential Cubic B-Spline Algorithm for Korteweg- de Vries Equation. Advances in Numerical Analysis 2015; 2015: 8 pages.
  • [16] Dağ I and Dereli Y. Numerical solutions of KdV equation using radial basis functions. Applied Mathematical Modelling 2008; 32(4): 535–546.
  • [17] Kutluay S, Bahadır A R and Ozdes A. A small time solutions for the Korteweg-de Vries equation, Appl. Math. Comput 2000; 107: 203-210.
  • [18] Saka B. Cosine expansion-based differential quadrature method for numerical solution of the KdV equation. Chaos Soliton Fractal 2009; 40: 2181-2190.
  • [19] Kaya D. An application for the higher order modified KdV equation by decompositionMethod. Commun. in Nonlinear Science and Num. Simul 2005; 10: 693-702.
  • [20] Biswas A and Raslan K R. Numerical simulation of the modified Korteweg-deVries Equation, Physics of Wave Phenomena 2011; 19(2): 142-147.
  • [21] Raslan K R and Baghdady H A. A finite difference scheme for the modified Korteweg-de Vries equation. General Mathematics Notes 2015; 27(1): 101-113.
  • [22] Raslan K R and Baghdady H A. New algorithm for solving the modified Korteweg-de Vries (mKdV) equation, International Journal of Research and Reviews in Applied Sciences 2014; 18(1): 59-64.
  • [23] Wazwaz A M. A variety of (3+1)-dimensional mKdV equations derived by using the mKdV recursion operator. Computers and Fluids 2014; 93(10): 41-45.
  • [24] Wazwaz A M. New (3+1)-dimensional nonlinear evolution equations with mKdV equation constituting its main part: multiple soliton solutions, Chaos, Solitons and Fractals 2015; 76: 93-97.
  • [25] Ak T, Karakoc S B G and Biswas. A. Application of Petrov-Galerkin finite element method to shallow water waves model: Modified Korteweg-de Vries equation. Scientia Iranica B 2017; 24(3): 1148-1159.
  • [26] Ak T, Karakoc S B G and Biswas. A New Approach for Numerical Solution of Modified Korteweg-de Vries Equation. Iran J Sci Technol Trans Sci 2017; 41: 1109-1121.
  • [27] Prenter PM. Splines and Variational Methods, Wiley 1975.
  • [28] Miura R M, Gardner C S and Kruskal M D. Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys 1968; 9(8): 1204.
  • [29] Miura R M. The Korteweg-de Vries equation: a survey of results. SIAM Rev 1976; 18(3): 412-459.