IMPROVING THE SHEET RESISTANCE OF CVD-GRAPHENE FILMS VIA DOPING

We report on the synthesize high quality and large area graphene and modifying their electrical properties by non-covalent doping methods. Large area graphene film was synthesized by chemical vapor deposition method on pre-treatment Cu foil and demonstrated to be greatly efficient to the quality of graphene. The films are mostly monolayer with the transmittance of about 98%. Graphene film was transferred onto Si/SiO2 substrate followed by various Self-Assembled Monolayers (SAMs) solution dropping. After doping, the number of charge carrier changes due to the nature of SAMs. Electrical measurement shows that the doping method can effectively manipulate the electrical properties of graphene and also doped graphene sheets can use in optoelectronics, solar cells, and thermoelectric solar cells etc.

___

  • [1] Castro Neto, A.H., F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, The electronic properties of graphene. Rev mod phys, 2009. 81(1): 109-162.
  • [2] Novoselov, K.S., A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): 666-669.
  • [3] Geim, A.K. and K.S. Novoselov, The rise of graphene. Nat Mater, 2007. 6(3): 183-191.
  • [4] Nguyen, B.H. and V.H. Nguyen, Promising applications of graphene and graphene-based nanostructures. Adv nat sci-nanosci, 2016. 7(2): 023002.
  • [5] Panchakarla, L., K. Subrahmanyam, S. Saha, A. Govindaraj, H. Krishnamurthy, U. Waghmare, and C. Rao, Synthesis, Structure, and Properties of Boron‐and Nitrogen‐Doped Graphene. Adv mater, 2009. 21(46): 4726-4730.
  • [6] Wang, L., X. Zhang, F. Yan, H.L.W. Chan, and F. Ding, Mechanism of boron and nitrogen in situ doping during graphene chemical vapor deposition growth. Carbon, 2016. 98: 633-637.
  • [7] Lu, H., Y. Guo, and J. Robertson, Charge transfer doping of graphene without degrading carrier mobility. J appl phys, 2017. 121(22): 224304.
  • [8] Giovannetti, G., P. Khomyakov, G. Brocks, V.v. Karpan, J. Van den Brink, and P.J. Kelly, Doping graphene with metal contacts. Phys rev lett, 2008. 101(2): 026803.
  • [9] Gebhardt, J., R. Koch, W. Zhao, O. Höfert, K. Gotterbarm, S. Mammadov, C. Papp, A. Görling, H.-P. Steinrück, and T. Seyller, Growth and electronic structure of boron-doped graphene. Phys rev B, 2013. 87(15): 155437.
  • [10] Wu, T., H. Shen, L. Sun, B. Cheng, B. Liu, and J. Shen, Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid. New j chem, 2012. 36(6): 1385-1391.
  • [11] Marconcini, P., A. Cresti, F. Triozon, G. Fiori, B. Biel, Y.-M. Niquet, M. Macucci, and S. Roche, Atomistic Boron-Doped Graphene Field-Effect Transistors: A Route toward Unipolar Characteristics. ACS Nano, 2012. 6(9): 7942-7947.
  • [12] Yao, W., K. Yao, G. Gao, H. Fu, and S. Zhu, Boron-doping controlled peculiar transport properties of graphene nanoribbon p–n junctions. Solid State Commun, 2013. 153(1): 46-52.
  • [13] Li, X.S., W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009. 324(5932): 1312-1314.
  • [14] Rao, C., K. Gopalakrishnan, and A. Govindaraj, Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements. Nano Today, 2014. 9(3): 324-343.
  • [15] Kumar, P., A.K. Singh, S. Hussain, K.N. Hui, K. San Hui, J. Eom, J. Jung, and J. Singh, Graphene: synthesis, properties and application in transparent electronic devices. Reviews in Advanced Sciences and Engineering, 2013. 2(4): 238-258.
  • [16] Chaki, N.K. and K. Vijayamohanan, Self-assembled monolayers as a tunable platform for biosensor applications. Biosens Bioelectron, 2002. 17(1): 1-12.
  • [17] Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chem Rev, 1996. 96(4): 1533-1554.
  • [18] Love, J.C., L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, and G.M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem Rev, 2005. 105(4): 1103-1170.
  • [19] Han, G.H., F. Güneş, J.J. Bae, E.S. Kim, S.J. Chae, H.-J. Shin, J.-Y. Choi, D. Pribat, and Y.H. Lee, Influence of Copper Morphology in Forming Nucleation Seeds for Graphene Growth. Nano Lett, 2011. 11(10): 4144-4148.
  • [20] Soo Min, K., H. Allen, L. Yi-Hsien, D. Mildred, P. Tomás, K. Ki Kang, and K. Jing, The effect of copper pre-cleaning on graphene synthesis. Nanotechnology, 2013. 24(36): 365602.
  • [21] Mattevi, C., H. Kim, and M. Chhowalla, A review of chemical vapour deposition of graphene on copper. J mater chem, 2011. 21(10): 3324-3334.
  • [22] Li, Z., I.A. Kinloch, R.J. Young, K.S. Novoselov, G. Anagnostopoulos, J. Parthenios, C. Galiotis, K. Papagelis, C.-Y. Lu, and L. Britnell, Deformation of Wrinkled Graphene. ACS Nano, 2015. 9(4): 3917-3925.
  • [23] Ryan, B., C. Luiz Gustavo, and N. Lukas, Raman characterization of defects and dopants in graphene. J phys-condens mat, 2015. 27(8): 083002.
  • [24] Li, Y., Intrinsic Doping Dependence of Raman 2D Mode in Graphene: Signatures of Electron–Electron Interaction, in Probing the Response of Two-Dimensional Crystals by Optical Spectroscopy. 2016, Springer International Publishing: Cham. p. 9-18.
  • [25] Kim, K.K., J.J. Bae, S.M. Kim, H.K. Park, K.H. An, and Y.H. Lee, Control of p-doping on single-walled carbon nanotubes with nitronium hexafluoroantimonate in liquid phase. phys status solidi B, 2009. 246(11‐12): 2419-2422.
  • [26] Gunho, J., C. Minhyeok, L. Sangchul, P. Woojin, K. Yung Ho, and L. Takhee, The application of graphene as electrodes in electrical and optical devices. Nanotechnology, 2012. 23(11): 112001.
  • [27] Pang, S., Y. Hernandez, X. Feng, and K. Müllen, Graphene as Transparent Electrode Material for Organic Electronics. Adv mater, 2011. 23(25): 2779-2795.
  • [28] Song, H.S., S.L. Li, H. Miyazaki, S. Sato, K. Hayashi, A. Yamada, N. Yokoyama, and K. Tsukagoshi, Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition. Sci Rep-UK, 2012. 2: 337.
  • [29] Chen, J.-H., C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol, 2008. 3: 206.