INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

Recently increasing attention has been paid to the development of highly sensitive and selective electrochemical sensors for accurate and cost-effective detection in various fields. In this study, gold nanoparticles (AuNPs) were electro-deposited onto screen printed gold electrode (SPGE) surfaces at different times to determine the optimum modification conditions. Determining the optimum modification for the SPGE surface, AuNP modification under −0.3 V potential with 2 mM HAuCl4 (in 0.5 M H2SO4) solution were investigated. In this case, for the optimum AuNP modification, electrochemical impedance spectroscopy (EIS) analysis was performed at the following deposition times: 30, 60, 90, 120, and 150 s. As a result of modeling the Nyquist graph obtained in the range of 10 kHz to 0.1 Hz with the EIS analysis based on the equivalent circuit model, the outcomes for each modification time were analyzed. After the modification with AuNPs, scanning electron microscope (SEM) images of the SPGE surfaces were discussed. As a result, the optimum deposition time was determined as 90 s by the analysis. This study can be used for electrochemical investigation and target detection in complex media in terms of AuNPs on SPGE surfaces with a detailed perspective for nanoparticle deposition.

INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

ecently increasing attention has been paid to the development of highly sensitive and selective electrochemical sensors for accurate and cost-effective detection in various fields. In this study, gold nanoparticles (AuNPs) were electro-deposited onto screen printed gold electrode (SPGE) surfaces at different times to determine the optimum modification conditions. Determining the optimum modification for the SPGE surface, AuNP modification under −0.3 V potential with 2 mM HAuCl4 (in 0.5 M H2SO4) solution were investigated. In this case, for the optimum AuNP modification, electrochemical impedance spectroscopy (EIS) analysis was performed at the following deposition times: 30, 60, 90, 120, and 150 s. As a result of modeling the Nyquist graph obtained in the range of 10 kHz to 0.1 Hz with the EIS analysis based on the equivalent circuit model, the outcomes for each modification time were analyzed. After the modification with AuNPs, scanning electron microscope (SEM) images of the SPGE surfaces were discussed. As a result, the optimum deposition time was determined as 90 s by the analysis. This study can be used for electrochemical investigation and target detection in complex media in terms of AuNPs on SPGE surfaces with a detailed perspective for nanoparticle deposition.

___

  • Avci, H., Anıl H., Koc, Y., Morali, U., and Erol, S. (2019). Developing Biosensors for Food Safety Analysis. Presented at The 4th International Congress on Biosensors, Çanakkale, Turkey.
  • Charoenkitamorn, K., Chailapakul, O., and Siangproh, W. (2015). Development of gold nanoparticles modified screen-printed carbon electrode for the analysis of thiram, disulfiram and their derivative in food using ultra-high performance liquid chromatography. Talanta 132: 416-423. https://doi.org/10.1016/j.talanta.2014.09.020
  • Dridi, F., Marrakchi, M., Gargouri, M., Saulnier, J., Jaffrezic-Renault, N., and Lagarde, F. (2017). Nanomaterial-based electrochemical biosensors for food safety and quality assessment. In Nanobiosensors (pp. 167-204). Academic Press. https://doi.org/10.1016/B978-0-12-804301-1.00005-9
  • Galeotti, M., Giammanco, C., Cinà, L., Cordiner, S., and Di Carlo, A., (2015). Synthetic methods for the evaluation of the State of Health (SOH) of nickel-metal hydride (NiMH) batteries. Energ. Convers. Manage.,92,1-9. https://doi.org/10.1016/j.enconman.2014.12.040
  • Güzel, F. D., Ghorbanpoor, H., Dizaji, A. N., Akcakoca, I., Ozturk, Y., Kocagoz, T., Corrigan, D., and Avci, H. (2021). Label‐free molecular detection of antibiotic susceptibility for Mycobacterium smegmatis using a low cost electrode format. Biotechnology and Applied Biochemistry, 68(6), 1159-1166. https://doi.org/10.1002/bab.2037
  • I.M. Apetrei, C. and Apetrei, (2018). A modified nanostructured graphene-gold nanoparticle carbon screen-printed electrode for the sensitive voltammetric detection of rutin. Measurement 114, 37–43. https://doi.org/10.1016/j.measurement.2017.09.020
  • Jorcin, J.-B., Orazem, M. E., Pébère, N., and Tribollet, B. (2006). CPE analysis by local electrochemical impedance spectroscopy. Electrochimica Acta, 51(8-9), 1473–1479. https://doi.org/10.1016/j.electacta.2005.02.128
  • Koc, Y., Morali, U., Erol, S., and Avci, H. (2019). Investigation of Immobilization Process of Screen Printed Carbon Electrode for an Advanced Biosensor A Detailed Characterization. Presented at the IV. International Scientific and Vocational Studies Congress - Engineering, Ankara, Turkey.
  • Koç, Y., Moralı, U., Erol, S., and Avci, H. (2021a). Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy. Turkish Journal of Chemistry, 45(6). http://doi.org/10.3906/kim-2105-55
  • Koç, Y., Moralı, U., Erol, S., and Avci, H. (2021b) Electrochemical Investigation of Gold Based Screen Printed Electrodes: An Application for a Seafood Toxin Detection. Electroanalysis, 33(4), 1033-1048. https://doi.org/10.1002/elan.202060433
  • M. Singh, N. Jaiswal, I. Tiwari, C.W. Foster, and C.E. Banks, (2018). A reduced graphene oxide-cyclodextrin-platinum nanocomposite modified screen printed electrode for the detection of cysteine. J. Electroanal. Chem. 829, 230–240. https://doi.org/10.1016/j.jelechem.2018.09.018
  • Merli, D., Ferrari, C., Cabrini, E., Dacarro, G., Pallavicini, P., and Profumo, A. (2016). A gold nanoparticle chemically modified gold electrode for the determination of surfactants. RSC advances, 6(108), 106500-106507. https://doi.org/10.1039/C6RA22223D
  • Morali, U. (2020). Synergistic influence of charge conditions on electrochemical impedance response of LiNiMnCoO2|C coin cells - Complementary statistical analysis. Journal of Energy Storage, 32, 101809. https://doi.org/10.1016/j.est.2020.101809
  • Orazem, M. E., and Tribollet, B. (2008). Electrochemical impedance spectroscopy. New Jersey, 383-389.
  • Samie, H. A., and Arvand, M., (2020). Label-free electrochemical aptasensor for progesterone detection in biological fluids, Bioelectrochemistry, 133, 107489. https://doi.org/10.1016/j.bioelechem.2020.107489
  • Sanzo, G., Taurino, I., Antiochia, R., Gorton, L., Favero, G., Mazzei, F., Micheli, and Carrara, S. (2016). Bubble electrodeposition of gold porous nanocorals for the enzymatic and non-enzymatic detection of glucose. Bioelectrochemistry, 112, 125-131. https://doi.org/10.1016/j.bioelechem.2016.02.012
  • Stine, K. J. (2019). Biosensor Applications of Electrodeposited Nanostructures. Applied Sciences, 9(4),797. https://doi.org/10.3390/app9040797
  • Taurino, I., Sanzò, G., Antiochia, R., Tortolini, C., Mazzei, F., Favero, G., Michelii and Carrara, S. (2016). Recent advances in third generation biosensors based on Au and Pt nanostructured electrodes. TrAC Trends in Analytical Chemistry, 79, 151-159. https://doi.org/10.1016/j.trac.2016.01.020
  • Wang, S., Zhang, J., Gharbi, O., Vivier, V., Gao, M., and Orazem M. (2021). Electrochemical impedance spectroscopy. Nat Rev Methods Primers 1, 41. https://doi.org/10.1038/s43586-021-00039-w
  • Wolff, N., Harting, N., Heinrich, M., Röder, F., and Krewer, U. (2018). Nonlinear frequency response analysis on lithium-ion batteries: a model-based assessment. Electrochimica Acta, 260, 614-622. https://doi.org/10.1016/j.electacta.2017.12.097
  • Zhang, Y., Jiang, X., Zhang, J., Zhang, H., & Li, Y. (2019). Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosensors and Bioelectronics, 130, 315-321. https://doi.org/10.1016/j.bios.2019.01.043
Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1986
  • Yayıncı: Eskişehir Osmangazi Üniversitesi
Sayıdaki Diğer Makaleler

TANE ŞEKLİNİN GALEN CEVHERİNİN FLOTASYONUNA VE TOPAKLANMASINA ETKİSİ

Turan UYSAL, Onur GÜVEN

KURŞUNLU-DAĞDERE (KONYA) ARASINDAKİ BÖLGENİN JEOKİMYASAL ÖZELLİKLERİ VE CEVHER POTANSİYELİNİN İSTATİSTİKSEL DEĞERLENDİRİLMESİ

Fetullah ARIK, Zahide Seher ATEŞ, Yeşim ÖZEN

Polimer Kompozit ve Çelik Diske Karşı Cam Elyaf Takviyeli Poli-Eter-Eter-Keton (PEEK) Kompozitin Aşınma Özellikleri

Hüseyin ÜNAL, Salih Hakan YETGİN, Veysel Furkan ÜNAL

TIRNAK GÖRÜNTÜLERİNDEN HASTALIK TEŞHİSİ

Zuhal CAN, Şahin IŞIK

ROBOTİK SİSTEMLERDE KAMERA TABANLI ALGININ DOĞRULANMASI İÇİN HATA ENJEKSİYON ARACI VE VERİ KÜMESİNİN GELİŞTİRİLMESİ

Uğur YAYAN, Alim Kerem ERDOĞMUŞ

Elektrikli Araçlarda Kullanılan Paralel ve Seri Kanallı Soğutma Plakalarının Performanslarının HAD Yöntemi ile Karşılaştırılması

Ayhan Nazmi İLİKAN, Ahmet YAYLI

KÖMÜR DAMARI METAN İÇERİKLERİNİN BULANIK MANTIK YÖNTEMİ İLE TAHMİNİ

Nilüfer KURŞUNOĞLU

ÜÇ FARKLI TERMİK SANTRALDEN ALINAN UÇUCU KÜLÜN İNCE TANELİ ZEMİNİN KOMPAKSİYON VE DAYANIM ÖZELLİKLERİ ÜZERİNDEKİ PERFORMANSI

Hakan BİLİCİ, Murat TÜRKÖZ, Hasan SAVAŞ

DERİN ÖĞRENME ALGORİTMASI KULLANILARAK ENDOSKOPİ GÖRÜNTÜLERİNDE POLİPLERİN ARAŞTIRILMASI

Emine CENGİZ, Faik YAYLAK, Eyyüp GÜLBANDILAR

AHP, BULANIK AHP, LBWA VE COPRAS YÖNTEMLERİ İLE TEDARİKÇİ DEĞERLENDİRME: DEMİRYOLU SEKTÖRÜNDE BİR UYGULAMA

Meryem ULUSKAN, Dilşad TOPUZ, Cansel ÇİMEN