Polimer Kompozit ve Çelik Diske Karşı Cam Elyaf Takviyeli Poli-Eter-Eter-Keton (PEEK) Kompozitin Aşınma Özellikleri

Bu çalışmada, %30 cam elyaf (CE) katkılı poli-eter-eter-keton (PEEK) polimerinin termoset poliester kompozit ve AISI 316L paslanmaz çelik diske karşı kuru ortam şartları altında sürtünme ve aşınma özellikleri incelenmiştir. Sürtünme ve aşınma çalışmaları pim-disk aşınma test cihazı ile gerçekleştirilmiştir. Aşınma ve sürtünme testleri 0.5m/s kayma hızında ve 20, 40 ve 60N yük altında yapılmıştır. Çalışma sonucunda, her iki disk için uygulanan yükün artması ile PEEK/30CE kompozitin sürtünme katsayısı ve aşınma oranı artmıştır. En düşük sürtünme katsayısı ve aşınma oranı, sırasıyla 0.24 ve 3.31x10-15 m2/N değerleri ile 20N yük altında AISI 316L paslanmaz çelik disk kullanıldığında elde edilmiştir.

Wear Behaviours of Glass Fiber Reinforced Poly-ether-ether-ketone Composite (PEEK) Versus Polymer Composite and Steel Counterparts

In this study, the friction and wear behaviors of 30wt.% glass fiber reinforced poly-ether-ether-ketone (PEEK) have been studied versus thermoset polyester composite and AISI 316L SS steel counterparts under dry sliding conditions. Friction and wear studies were carried out using a pin-on-disc wear test rig. Friction and wear tests were run at 0.5m/s sliding speed and under the applied load of 20, 40 and 60 N. The results show that the coefficient of friction and specific wear rate of glass fiber reinforced PEEK composites increased with increasing applied load for both of discs. The lowest coefficient of friction and specific wear rate were obtained when using AISI 316L SS steel disc under 20N load with a value of 0.24 and 3.31x10-15 m2/N, respectively.

___

  • [1].Nevin Gamze K., Sadi D., Taner Y. 2016.Thermal aging and reinforcement type effects on the tribological, thermal, thermomechanical, physical and morphological properties of poly(ether ether ketone) composites. Composites Part B, 88: 253-263.
  • [2].En-Zhong L., Bin-Shi X., Hai-Dou W., Wei-Ling G. 2013. The tribological behavior of glass fiber-reinforced polyetheretherketone composite under dry sliding and water lubrication. Journal of Reinforced Plastics and Composites, 32 (5): 318–329.
  • [3].Huseyin U., Abdullah M., Ahmet O. 2017. Friction and wear performance of glass fiber reinforced poly-ether-ether-ketone composite against different polymer counterparts. MOJ Polymer Science, 1 (5): 188‒190.
  • [4].Mir A. H., Charoo M. S. 2019. Friction and wear characteristics of polyetheretherketone (PEEK): A review. IOP Conf. Series: Materials Science and Engineering, 561: 012051.
  • [5].Ganesh K.G., Dr. Dhamejani C. L. 2016. Investigation of Tribological Behavior of PEEK Composite with Glass Fiber filled under Harsh Operating Condition. International Journal of Advance Research and Innovative Ideas in Education, 2 (1): 271-279.
  • [6].Laux K.A., Jean-Fulcrand A., Sue H.J., Bremner T., Wong J.S.S. 2016. The influence of surface properties on sliding contact temperature and friction for polyetheretherketone (PEEK). Polymer, 103: 397-404.
  • [7].Song J., Liu Y.H., Wang S., Liao Z.H., Liu W.Q. 2015. Study on the wettability and tribological behaviors of glass fiber reinforced poly(ether-ether-ketone) against different polymers as bearing materials for artificial cervical disc. Biotribology, 4: 18–29.
  • [8].Zhang G., Wetzel B., Wang Q. 2015. Tribological behavior of PEEK-based materials under mixed and boundary lubrication conditions. Tribology International, 88: 153–161.
  • [9].Haofei S., Xujing Y., Kai W., Yazhuo W., Wenjun F. 2019. Non-isothermal crystallization kinetics of continuous glass fiberreinforced poly(ether ether ketone) composites. Journal of Thermal Analysis and Calorimetry, 138: 369–378.
  • [10].Kumar D., Rajmohan T. 2019. Experimental investigation of wear of multiwalled carbon nanotube particles filled poly-ether-ether-ketone matrix composites under dry sliding. Journal of Thermoplastic Composite Materials, 32 (4): 521-543.
  • [11].Ozel A., Abdullah M., Huseyin U. 2015. Tribological Performance of Polymer Composites in Use in Electrical Insulation Applications. Journal of Industrial Engineering Research, 1 (11): 20-24.
  • [12].Li E.Z., Guo W.L., Wang H.D., Xu B.S., Liu X.T. 2013. Research on Tribological Behavior of PEEK and Glass Fiber Reinforced PEEK Composite. Physics Procedia, 50: 453–460.
  • [13].Lind J., Lindholm P., Qin J., Kassman Rudolphi A. 2015. Frıctıon and wear studıes of some PEEK materıals. TRIBOLOGIA - Finnish Journal of Tribology, 2 (33): 20-28.
  • [14].Unal H., Mimaroglu A., 2006. Friction andwear characteristics of PEEK and itscomposites under water lubrication, Journal of Reinforced Plastics Composites, 16: 1659–1667.
  • [15].Zeng H., He G., Yang G., 1987. Friction and wear of poly(phenylene sulphide) and its carbon fibre composites: I unlubricated. Wear, 116 (1): 59-68.
  • [16].Zhong Y.J., Xie G.Y., Sui G.X., Yang R. 2011. Poly(ether ether ketone) Composites Reinforced by Short Carbon Fibers and Zirconium Dioxide Nanoparticles: Mechanical Properties and Sliding Wear Behavior with Water Lubrication. Journal of Applied Polymer Science, 119: 1711–1720.
  • [17].Thiago F. de A., Helio W., Amilton S. 2019. Tribology of natural Poly-Ether-Ether-Ketone (PEEK) under transmission oil lubrication. Polímeros, 29 (2): 1-9.
  • [18].Brockett C.L., John G., Williams S., Jin Z., Isaac G.H., Fisher J. 2012. Wear of ceramic-on carbon fiber-reinforced poly-ether ether ketone hip replacements Journal of Biomedical Materials Research Part B, 100B: 1459–1465.
  • [19].Bahadur S., 2000. The development of transfer layers and their role in polymer tribology. Wear, 245: 92-99.
  • [20].Jain V.K., Bahadur, S. 1978. Material transfer in polymer-polymer sliding. Wear, 46 (1): 177-188.
  • [21].Abdulaziz K., Wen H.K., Li C. 2019. Tribological behaviour of high performance polymers and polymer composites at elevated temperature. Tribology International, 130: 94-105.
  • [22].You Yi-L., Du-Xin L., Gao-Jie Si., Ruo-Yun L., Xin D. 2016. Improvement in the tribological properties of polyamide 6: Talc, glass fiber, graphite, and ultrahigh-molecular-weight polyethylene. Journal of Thermoplastic Composite Materials, 29 (4): 494-507.