Farklı Azimuthal ve Saçılma Açılarında Antimonun Lβ/LD Şiddet Oranları

Sb’ nin Lβ / LD X-ışını şiddet oranları farklı azimuthal ve saçılma açılarında ölçüldü. Sb’ yi uyarmak amacıyla ve Sb’den gelen X-ışınların saymak amacıyla 241 Am nokta kaynak ve Si(Li) dedektör sırasıyla kullanıldı. Datalar Origin 9 programı aracılığıyla analiz edildi ve Lβ / LD şiddet oranlarının farklı azimuthal açı ve saçılma açısı değerleriyle değiştiği belirlendi.

Lβ/LD Intensity Ratios of Antimony at Different Azimuthal and Polar Angles

Lβ/LD X-ray intensity ratios of antimony (Sb) were investigated at different azimuthal (-30° ≤ φ ≤+30°, atintervals of 10°) and polar scattering angles (85°≤ θ ≤135° at intervals of 10°). In the purpose of exciting to Sband detecting the X-rays emitted from Sb, 241 Am point source and Si(Li) detector have been used, respectively.The data was analysed by means of Origin 9 Software and it was determined that Lβ/LD change by polarscattering angle at a fixed azimuthal scattering angle and by azimuthal scattering angle at a fixed polar scatteringangle.

___

  • Akkuş, T. Şahin, Y. Yılmaz, D. Tuzluca, F. N. 2016. The K-beta/K-alpha intensity ratios of some elements at different azimuthal scattering angles at 59.54 keV. Canadian Journal of Physic, 94, 1–5. Akkuş, T. Şahin, Y. Yılmaz, D. 2016.
  • Azimuthal and polar angle dependence of L X-ray differential cross-sections of Yb at 59.54keV photon energy. Nuclear Instruments and Methods in Physics Research B, 366, 145–149.
  • Cesareo, R. Rizzutto, M. A. Brunetti, A. Rao, D. V. 2009. Metal location and thickness in a multilayered sheet by measuring KD/Kβ, LD/Lβ and LD/Lγ X-ray ratios. Nuclear Instruments and Methods in Physics Research B, 267, 2890-2896.
  • Cooper, J. Zare, N. 1969. Photoelectron angular distribution. Lectures on Theoretical Physics. X1C, 317–337.
  • Demir, D. Şahin, Y. 2007. Measurement of L X-Ray Intensity Ratios for 92U and 90Th Elements Using Photoionization in an External Magnetic Field. Chinese Physics Letters, 24, 668-671.
  • Doğan, O. Şimşek, Ö. Turgut, Ü. Ertuğrul, M. 1998. L X-ray intensity ratios in heavy elements at 59.5 and 122 keV photons. Journal of Radioanalytical and Nuclear Chemistry, 232, 143-146.
  • Ertuğrul, M. 1996. Measurement of crosssections and Coster-Kronig transition effect on L subshell X-rays of some heavy elements in the atomic range 79 ≤ Z ≤92 at 59.5 keV. Nuclear Instruments and Methods in Physics Research B, 119, 345- 351.
  • Flügge, S. Melhorn, W. Schmidt, V. 1972. Angular distribution of auger electrons following photoionization. Physical Review Letter, 29, 7–9.
  • Gerward, L. Guilbert, N. Jensen, K. B. Levring, H. 2001. X-ray absorption in matter, reengineering XCOM. Radiation Physics and Chemistry, 60, 23-24.
  • Gerward, L. Guilbert, N. Jensen, K. B. Levring, H. 2004. WinXCom-a program for calculating X-ray attenuation coefficients. Radiation Physic and Chemistry, 71, 653– 654.
  • Han, I. Sahin, M. Demir, L. 2008. Angular variations of K and L X-ray fluorescence cross sections for some lanthanides. Canadian Journal of Physic, 86, 361–367.
  • Han, I. Sahin, M. Demir, L. 2009. The polarization of X-rays and magnetic photoionization cross-sections for L3 subshell. Applied Radiaion and Isotopes, 67, 1027–1032.
  • Kawai, J. 2001.Intensıty Ratıo of Transıtıon-Metal La and Lb Lınes. The Rigaku Journal, 18, 31-37Krause, M. O. 1979. X-Ray Fluorescence Cross Sections for K and L X Rays of the Elements. Journal of Physical and Chemical Reference Data, 8, 3307.
  • Kahlon, K. S. Aulakh, H. S. Singh, N. Mittal, R. Allawadhi, K.L. Sood, B. S. 1991. Measurement of angular distribution and polarization of photon-induced fluorescent x rays in thorium and uranium. Physical Review A, 43, 1455-1460.
  • Pawlowski, F. Polasik, M. Raj, S. Padhi, H.C. Basa, D.K. 2002. Valence electronic structure of Ti, Cr, Fe and Co in some alloys from Kβ-to-Kα X-ray intensity ratio studies. Nuclear Instruments and Methods in Physics Research B, 195, 367–373.
  • Raj, S. Padhi. H.C. Polasik, M. 1998. Influence of chemical e€ect on the Kb-toKa X-ray intensity ratios of Ti, V, Cr and Fe in TiC, VC, CrB, CrB2 and FeB. Nuclear Instruments and Methods in Physics Research B, 145, 485-491.
  • Scofıeld, J. H. 1974. Relativistic HartreeSlater values for K and L X-ray emission rates. Atomic Data and Nuclear Data Tables, 14, 121-137.
  • Seven, S. Koçak, K. 2002. Angular dependence of L x-ray production crosssection in seven elements from Au to U at 59.5 keV photon energy. X-Ray Spectrometry, 31, 75–83.
  • Söğüt, Ö. Büyükkasap, E. Ertuğrul, M. Küçükönder, A. 1997. Chemical Effect on L X-ray Intensity Ratios of Mercury, Lead, and Bismuth. Applied Spectroscopy Reviews, 32, 167-173.
  • Storm, E. Israel, H. I. 1970. Photon cross sectıons from 1 kev to 100 MEV for elements Z = 1" to Z = 100". Nuclear Data. Tables A, 7, 565-681.
  • Wang, X. Xu, Z. Zhang, L. 2016. Study of the angular distribution of W-L X-ray intensity ratios in photoionization. Modern Physics Letters B, 30 (1650060), 1-5.
  • Yalçın, P. Porikli, S. Kurucu, Y. Şahin, Y. 2008. Measurement of relative L X-ray intensity ratio following radioactive decay and photoionization. Physics Letters B, 663, 186–190.
Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1307-9085
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2008
  • Yayıncı: Erzincan Binali Yıldırım Üniversitesi, Fen Bilimleri Enstitüsü