Gıdalara Yeni Bir Terapötik Yaklaşım: microRNA

Sekanslama teknolojisinin gelişmesiyle birlikte hücreler arası iletişimde rol oynadığı belirlenen 19-24 bazlık uzunluğa sahip mikroRNA (miRNA)’lar keşfedilmiştir. Bu miRNA’ların insanda hücrenin gelişimi ve farklılaşmasının yanı sıra metabolizmada da önemli görevleri bulunmaktadır. Mikroveziküller içerisinde taşınan miRNA’lar bu sayede aşırı pH ve sıcaklık gibi koşullara bağlı olarak parçalanmaktan korunur.  Yapılan güncel çalışmalarda miRNA ekspresyonu ile gıdaların metabolizmada hücresel düzeyde faaliyetleri düzenlediği belirlenmiştir. İlk defa diyetlerine pirinç konularak beslenen farelerde yapılan bir çalışmayla pirinçe ait miR-168a’nın farelerin sindirim sistemi tarafından absorbe edildiği belirlenmiş ve bu miRNA’nın kolesterol transportunda rol oynayan LDLRAP1 mRNA ekspresyonunu engellediği tespit edilmiştir. miRNA’ların sindirim sistemi tarafından absorbe edildiğinin ortaya konduğu çalışmalarda, özellikle hayvansal kaynaklı miRNA’ların serum ve plazmaya geçtiği ileri sürülmüştür. Sahip olduğu bu potansiyel ile miRNA’lar, diyet aracılığıyla ortaya çıkan sağlık problemlerin engellenmesinde biyolojik marker olarak kullanılabilecektir.  Gıdaların sadece içermiş oldukları yağ, şeker, protein, vitamin gibi bileşenlerinin değil aynı zamanda sahip oldukları miRNA’ların metabolizmayı doğrudan veya dolaylı yollarla etkilediği bilinmektedir. Gıda kaynaklı miRNA’ların önem kazanmasıyla birlikte güncel bir besinsel miRNA veri tabanı oluşturulmuş ve burada elma, atlantik salmon, muz, tavuk, tavuk yumurtası, mısır, sığır yağı ve sütü, anne sütü, üzüm, portakal, domuz, pirinç, domates, soya fasulyesi ve buğday gibi gıdalarla ilgili miRNA profilleri bulunmaktadır. Bu çalışmada miRNA biyosentezi, eylem mekanizması ve gıdalardaki varlığı ile metabolizma üzerine olan etkileri tartışılmıştır. 
Anahtar Kelimeler:

microRNA, Gıda, Hastalık, Tedavi

A New Therapeutic Approach to Foods: microRNA

With the development of sequencing technology, microRNAs (miRNA) have between 19-24 bases in length which play a role in cell communication was discovered. These miRNAs have important tasks in the development and differentiation of cells, as well as in metabolism. The miRNAs carried in the microvesicle are prevented from degradation depending on the conditions such as extreme pH and temperature. In the current studies, it has been determined that the foods have regulate the activities at cellular level in metabolism by miRNA expression. ’This was first demonstrated by detecting rice miR-168a which absorbed by  digestive system. On the other hand, these miRNAs were found to inhibit the mRNA expression of LDL RAP1 involved in cholesterol transport. In studies where miRNAs have been absorbed by the digestive system, it has been suggested that miRNAs, in particular animal origin, pass into serum and plasma. With the miRNAs have this potential, it can be used as biological markers for the prevention of the health problems associated with diet. It’s known that foods contain the components such as fat, sugar, protein, vitamin affect to metabolism not only, but also miRNAs affect it directly or indirectly.  A recent dietary miRNA database was created with the increasing importance of foodborne miRNAs and there are miRNA profiles associated with foods such as apples, Atlantic salmon, bananas, chicken meat and egg, corn, beef fat and milk, breast milk, grapes, oranges, pork, rice, tomato, soybeans and wheat in this database. In this study, biosynthesis, the mechanism of action and presence in food and effects on metabolism of miRNAs were discussed.   

___

  • Ambros, V. 2004. “The functions of animal microRNAs”, Nature, 431(7006), 350.
  • Angel-Morales, G., Noratto, G., Mertens-Talcott, S. 2012. “Red wine polyphenolics reduce the expression of inflammation markers in human colon-derived CCD-18Co myofibroblast cells: Potential role of microRNA-126”, Food & Function, 3(7), 745-752.
  • Baier, S., Zempleni, J. 2014. “microRNAs in bovine milk are bioavailable in healthy adults and downregulate reporter gene activity in human kidney HEK-293 cell cultures”, Faseb Journal, 28(1).
  • Baier, S. R., Nguyen, C., Xie, F., Wood, J. R., Zempleni, J. 2014. “MicroRNAs Are Absorbed in Biologically Meaningful Amounts from Nutritionally Relevant Doses of Cow Milk and Affect Gene Expression in Peripheral Blood Mononuclear Cells, HEK-293 Kidney Cell Cultures, and Mouse Livers”, Journal Of Nutrition, 144(10), 1495-1500.
  • Bartel, D. P. 2004. “MicroRNAs: genomics, biogenesis, mechanism, and function”, cell, 116(2), 281-297.
  • Bartel, D. P. 2009. “MicroRNAs: target recognition and regulatory functions”, cell, 136(2), 215-233.
  • Cai, Y., Yu, X., Hu, S., Yu, J. 2009. “A brief review on the mechanisms of miRNA regulation”, Genomics Proteomics Bioinformatics, 7(4), 147-154.
  • Calin, G. A., Sevignani, C., Dan Dumitru, C., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., Croce, C. M. 2004. “Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers”, Proceedings Of The National Academy Of Sciences Of The United States Of America, 101(9), 2999-3004.
  • Chen, X., Ba, Y., Ma, L. J., Cai, X., Yin, Y., Wang, K. H., Guo, J. G., Zhang, Y. J., Chen, J. N., Guo, X., Li, Q. B., Li, X. Y., Wang, W. J., Zhang, Y., Wang, J., Jiang, X. Y., Xiang, Y., Xu, C., Zheng, P. P., Zhang, J. B., Li, R. Q., Zhang, H. J., Shang, X. B., Gong, T., Ning, G., Wang, J., Zen, K., Zhang, J. F., Zhang, C. Y. 2008. “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases”, Cell Research, 18(10), 997-1006.
  • Chiang, K. V., Shu, J., Zempleni, J., Cui, J. 2015. “Dietary MicroRNA Database (DMD): An Archive Database and Analytic Tool for Food-Borne microRNAs”, Plos One, 10(6).
  • Creugny, A., Fender, A., Pfeffer, S. 2018. “Regulation of primary micro RNA processing”, FEBS Lett.
  • Cullen, B. R. 2004. “Transcription and processing of human microRNA precursors”, Molecular Cell, 16(6), 861-865.
  • Esau, C. C., Monia, B. P. 2007. “Therapeutic potential for microRNAs”, Advanced Drug Delivery Reviews, 59(2-3), 101-114.
  • Farmer, L. M., Hirschi, K. D. 2017. “9 MicroRNAs: Bioactive molecules at the nexus of nutrition and disease”, Nutrigenomics and Proteomics in Health and Disease: Towards a Systems‐Level Understanding of Gene–Diet Interactions, 170-200.
  • Franco-Zorrilla, J. M., Valli, A., Todesco, M., Mateos, I., Puga, M. I., Rubio-Somoza, I., Leyva, A., Weigel, D., García, J. A., Paz-Ares, J. 2007. “Target mimicry provides a new mechanism for regulation of microRNA activity”, Nature genetics, 39(8), 1033.
  • Gomes, F., Watanabe, L., Nozawa, S., Oliveira, L., Cardoso, J., Vianez, J., Nunes, M., Schneider, H., Sampaio, I. 2017. “Identification and characterization of the expression profile of the microRNAs in the Amazon species Colossoma macropomum by next generation sequencing”, Genomics, 109(2), 67-74.
  • Gu, S., Jin, L., Zhang, F. J., Sarnow, P., Kay, M. A. 2009. “Biological basis for restriction of microRNA targets to the 3 ' untranslated region in mammalian mRNAs”, Nature Structural & Molecular Biology, 16(2), 144-150.
  • Gulyaeva, L. F., Kushlinskiy, N. E. 2016. “Regulatory mechanisms of microRNA expression”, Journal of Translational Medicine, 14, 143.He, L., Hannon, G. J. 2004. “MicroRNAs: small RNAs with a big role in gene regulation”, Nature Reviews Genetics, 5(7), 522.
  • Howard, K. 2015 “Stability and Biological Activity of Dietary MicroRNAs”, Published PhD Thesis, University of Nebraska-Lincoln Department of Nutrition and Health Sciences, Lincoln, Nebraska, 25-30.
  • Howard, K. M., Kusuma, R. J., Baier, S. R., Friemel, T., Markham, L., Vanamala, J., Zempleni, J. 2015. “Loss of miRNAs during Processing and Storage of Cow's (Bos taurus) Milk”, Journal Of Agricultural And Food Chemistry, 63(2), 588-592.
  • Huang, Y., Shen, X. J., Zou, Q., Wang, S. P., Tang, S. M., Zhang, G. Z. 2011. “Biological functions of microRNAs: a review”, Journal of physiology and biochemistry, 67(1), 129-139.
  • Hunter, M. P., Ismail, N., Zhang, X. L., Aguda, B. D., Lee, E. J., Yu, L. B., Xiao, T., Schafer, J., Lee, M. L. T., Schmittgen, T. D., Nana-Sinkam, S. P., Jarjoura, D., Marsh, C. B. 2008. “Detection of microRNA Expression in Human Peripheral Blood Microvesicles”, Plos One, 3(11).
  • Hwang, H., Mendell, J. 2006. “MicroRNAs in cell proliferation, cell death, and tumorigenesis”, British journal of cancer, 94(6), 776.
  • Kosaka, N., Izumi, H., Sekine, K., Ochiya, T. 2010. “microRNA as a new immune-regulatory agent in breast milk”, Silence, 1(1), 7.
  • Kunej, T., Godnic, I., Ferdin, J., Horvat, S., Dovc, P., Calin, G. A. 2011. “Epigenetic regulation of microRNAs in cancer: an integrated review of literature”, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 717(1), 77-84.
  • Kutay, H., Bai, S. M., Datta, J., Motiwala, T., Pogribny, I., Frankel, W., Jacob, S. T., Ghoshal, K. 2006. “Downregulation of miR-122 in the rodent and human hepatocellular carcinomas”, Journal Of Cellular Biochemistry, 99(3), 671-678.
  • Lam, T. K., Shao, S., Zhao, Y., Marincola, F., Pesatori, A., Bertazzi, P. A., Caporaso, N. E., Wang, E., Landi, M. T. 2012. “Influence of Quercetin-Rich Food Intake on microRNA Expression in Lung Cancer Tissues”, Cancer Epidemiology Biomarkers & Prevention, 21(12), 2176-2184.
  • Liang, H., Zhang, S., Fu, Z., Wang, Y., Wang, N., Liu, Y., Zhao, C., Wu, J., Hu, Y., Zhang, J., Chen, X., Zen, K., Zhang, C.-Y. 2015. “Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma”, The Journal of Nutritional Biochemistry, 26(5), 505-512.
  • Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., Bartel, D. P., Linsley, P. S., Johnson, J. M. 2005. “Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs”, Nature, 433(7027), 769.
  • Lukasik, A., Zielenkiewicz, P. 2017. “Plant MicroRNAs—Novel Players in Natural Medicine?”, International Journal of Molecular Sciences, 18(1), 9.
  • Maciotta, S., Meregalli, M., Torrente, Y. 2013. “The involvement of microRNAs in neurodegenerative diseases”, Frontiers In Cellular Neuroscience, 7.
  • Manning, K. S., Cooper, T. A. 2017. “The roles of RNA processing in translating genotype to phenotype”, Nature Reviews Molecular Cell Biology, 18(2), 102.
  • Megraw, M., Sethupathy, P., Corda, B., Hatzigeorgiou, A. G. 2007. “miRGen: a database for the study of animal microRNA genomic organization and function”, Nucleic Acids Research, 35, D149-D155.
  • Meng, Y., Shao, C., Wang, H., Chen, M. 2011. “The Regulatory Activities of Plant MicroRNAs: A More Dynamic Perspective”, Plant Physiology, 157(4), 1583.
  • Montecalvo, A., Larregina, A. T., Shufesky, W. J., Stolz, D. B., Sullivan, M. L., Karlsson, J. M., Baty, C. J., Gibson, G. A., Erdos, G., Wang, Z. 2011. “Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes”, Blood, blood-2011-2002-338004.
  • Pedersen, I. M., Cheng, G., Wieland, S., Volinia, S., Croce, C. M., Chisari, F. V., David, M. 2007. “Interferon modulation of cellular microRNAs as an antiviral mechanism”, Nature, 449(7164), 919.
  • Sayed, D., Abdellatif, M. 2011. “Micrornas In Development And Disease”, Physiological Reviews, 91(3), 827-887.Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., Lötvall, J. O. 2007. “Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells”, Nature cell biology, 9(6), 654.
  • Vrijens, K., Bollati, V., Nawrot, T. S. 2015. “MicroRNAs as potential signatures of environmental exposure or effect: a systematic review”, Environ Health Perspect, 123(5), 399.
  • Wagner, A. E., Piegholdt, S., Ferraro, M., Pallauf, K., Rimbach, G. 2015. “Food derived microRNAs”, Food & Function, 6(3), 714-718.
  • Wahid, F., Shehzad, A., Khan, T., Kim, Y. Y. 2010. “MicroRNAs: Synthesis, mechanism, function, and recent clinical trials”, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1803(11), 1231-1243.
  • Wang, W., Liu, D., Zhang, X., Chen, D., Cheng, Y., Shen, F. 2018. “Plant MicroRNAs in Cross-Kingdom Regulation of Gene Expression”, International Journal of Molecular Sciences, 19(7), 2007.
  • Weiss, C. N., Ito, K. (2017). A macro view of microRNAs: the discovery of microRNAs and their role in hematopoiesis and hematologic disease. In International review of cell and molecular biology (Vol. 334, pp. 99-175): Elsevier.
  • Zempleni, J., Baier, S. R., Hirschi, K. 2015. “Diet-responsive MicroRNAs Are Likely Exogenous”, Journal Of Biological Chemistry, 290(41), 25197-25197.
  • Zhang, L., Hou, D. X., Chen, X., Li, D. H., Zhu, L. Y., Zhang, Y. J., Li, J., Bian, Z., Liang, X. Y., Cai, X., Yin, Y., Wang, C., Zhang, T. F., Zhu, D. H., Zhang, D. M., Xu, J., Chen, Q., Ba, Y., Liu, J., Wang, Q., Chen, J. Q., Wang, J., Wang, M., Zhang, Q. P., Zhang, J. F., Zen, K., Zhang, C. Y. 2012. “Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA”, Cell Research, 22(1), 107-126.
Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1307-9085
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2008
  • Yayıncı: Erzincan Binali Yıldırım Üniversitesi, Fen Bilimleri Enstitüsü