Çevre Numunelerinde Sodyum İyonunun Potansiyometrik Detektör Kullanarak Akış Enjeksiyon Tekniği ile Tayini

Bu çalışmada, su numunelerindeki sodyum derişiminin belirlenmesinde kullanılmak üzere ticari olarak satın alınan iyonofor madde ile Na+ -seçici mikro potansiyometrik PVC-membran elektrot geliştirildi. Elektrotun potansiyometrik performans karakteristikleri belirlendi ve çevresel analizlere uygunluğu araştırıldı. Hazırlanan Na+ -seçici elektrot ile alınan ölçümlerde ana iyon çözeltilerinin derişimindeki her 10 katlık değişimine karşılık gelen potansiyel farkı 50,8 (±1,4) mV/pNa olarak gözlendi. Elektrot, 1x10-1 -1x10-5 mol L-1 derişim aralığında ana iyon çözeltisine karşı doğrusal davranış sergilediği ve test edilen iyonlara karşı oldukça seçici olduğu belirlendi. Laboratuvarda mikro ölü hacme sahip akış hücreleri hazırlandı ve akış enjeksiyon analizi sisteminde geliştirilen bu elektrotların detektör olarak kullanılması ile çevresel su numunelerinde sodyum iyonu tayini doğrudan yapıldı. Ayrıca, su numunelerindeki sodyum iyonu tayini standart ekleme yöntemi kullanarak geliştirilen tayin yöntemi ile de yapıldı ve tüm ölçümler potansiyometrik sonuçlarla karşılaştırmalı olarak verildi. Elde edilen sonuçlar, geliştirilen Na+ -seçici mikro potansiyometrik PVC-membran elektrot ile çevre numunelerindeki sularda sodyum iyonunun rutin tayininde etkin bir şekilde kullanılabileceğini göstermektedir.

Determination of Sodium Ion in Environmental Samples by Using Potentiometric Detector in Flow Injection Technique

In this study, Na+ -selective potentiometric PVC-membrane electrode was developed with the commercially purchased ionophore substance to be used to determine sodium concentration in water samples. The potentiometric performance characteristics of the electrode were determined and its suitability for environmental analysis was investigated. For the measurements taken with the Na+ -selective electrode, a potential difference of 50,8 (±1,4) mV/pNa was observed for each 10 fold concentration change against the main ion solution The electrode was determined to exhibit a linear behavior towards the main ion solution in the concentration range of 1x10-1 -1x10-5 mol L-1 and was highly selective towards the tested ions. Micro dead volume flow cells were prepared in the laboratory and the sodium ion determination was made directly in environmental water samples by using these electrodes developed as a detector in the flow injection analysis system. In addition, sodium ion determination in water samples was made using the assay method developed using the standard addition method and all measurements were given in comparison with potentiometric results. The results show that the Na+ -selective micro-potentiometric PVC-membrane electrode can effectively be used for routine determination of sodium ion in environmental samples.

___

  • Amini, M. K., Ghaedi, M., Rafi, A., Habibi, M. H., Zohory, M. M. 2003, ‘Iodide selective electrodes based on bis(2- mercaptobenzothiazolato) mercury(ıı) and bis(4-chlorothiophenolato) mercury(ıı) carriers’, Sensors, 3(11), 509-523.
  • Captian-Vallvey, L. F., Fernandez-Ramos, M. D. 2003, ‘Characterization of a transparent optical test strip for quantification of water hardness’, Analytica Chimica Acta, 481, 139- 148.
  • Garcia, R. A., Vanelli, C. P., Junior, O. S. P., Corrêa, J. O. A. 2018, ‘Comparative analysis for strength serum sodium and potassium in three different methods: flame photometry, ion-selective electrode (ıse) and colorimetric enzymatic’, J. Clin. Lab. Anal., 32, 1-8.
  • Gallardo, J. S., Alegret, M. A. D., Roman, R., Munoz, P. R., Hernandez, L., Leija, L., del Valle, M. 2003, ‘Determination of ammonium ıon employing an electronic tongue based on potentiometric sensors’, Analytical Letter, 36(14), 2893-2908.
  • Cardwell, T. J., Cattrall, R. W., Hauser, P C., Hamilton, I.C. 1988, ‘A multi-ion sensor cell and data acquisition system for flow injection analysis’, Anal. Chim. Acta, 214, 359-366.
  • Gismera, M. J., Arias, S., Sevilla, M. T., Procopio, J. R. 2009, ‘Simultaneous quantification of heavy metals using a solid state potentiometric sensor array’ Electroanalysis, 21, 979-987.
  • Gutierrez, M., Alegret, S., Caceres, R., Casadesus, J., Marfa, O., del Valle, M. 2008, ‘Nutrient solution monitoring in greenhouse cultivation employing a potentiometric electronic tongue’ J. Agric. Food Chem., 56, 1810-1817.
  • Hassan, S. S., Sayour, H. E., Al-Mehrezi, S. S. 2007, ‘A novel planar miniaturized potentiometric sensor for flow injection analysis of nitrates in wastewaters, fertilizers and pharmaceuticals’, Anal. Chim. Acta, 581, 13-18.
  • IUPAC, 1994, ‘Analytical chemistry division, commission on electroanalytical chemistry, recomendations for nomen-clature of ıonselective electrodes’, Pure Appl. Chem., 66, 2527-2536.
  • IUPAC, 2000. Potentiometric selectivity coefficients of ion-selective electrodes, Pure and Applied Chemistry, 72, 1851–2082.
  • Kabaa, E.A., Abdulateef, S.A., Ahmed, N.M., Hassan, Z. ve Sabah, F.A. 2019, ‘A novel porous silicon multi-ions selective electrode based extended gate field effect transistor for sodium, potassium, calcium, and magnesium sensor’, Applied Pysics A, 125(11), 753-763.
  • Katrangi, W., Nikola, A.B., Ryan, C.N., Brad, S.K. ve Darci, R.B., 2019, ‘Prevalence of clinically significant differences in sodium measurements due to abnormal protein concentrations using an ındirect ıon-selective electrode method’, Journal Of Applied Laboratory Medicine, 4(3), 427-432.
  • Komaba, S., Akatsuka, T., Ohura, K., Suzuki, C,, Yabuuchi, N., Kanazawa, S., Tsuchiya, K. Ve Hasegawa, T. 2017, ‘All-solid-state ionselective electrodes with redox-active lithium, sodium, and potassium insertion materials as the inner solid-contact layer’, Analyst, 142(20), 3857-3866.
  • Lai, C.T., Gardner, H. ve Geddes, D. 2018, ‘Comparison of ınductively coupled plasma optical emission spectrometry with an ıon selective electrode to determine sodium and potassium levels in human milk’, Nutrients, 10(9), 1218-1227.
  • Li, Y-S., Xing, C-X., Yang, L-L. 2005, ‘Determination of trace sodium in the waterstream system pf power plants using an FIA/ISE method with an automatic penentration and alkalization apparatus’, Analytical Sciences, 21, 273-279.
  • Luboch, E., Jeszke, M., Szarmach, M. ve Łukasik, N. 2016, ‘New bis(azobenzocrown)s with dodecylmethylmalonyl linkers as ionophores for sodium selective potentiometric sensors’, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 86(3-4), 323-335.
  • Lukov, S., Kounaves, S. 2005, ‘Analyses of simulated martian regolith using an array of ion selective electrodes’, Electroanalyses, 17, 15-16.
  • Megahed, A.A., Hiew, M., Grünberg, W., Trefz, F:M: ve Constable, P.D. 2019, ‘Evaluation of the analytical performance of a portable ion-selective electrode meter for measuring whole-blood, plasma, milk, abomasal-fluid, and urine sodium concentrations in cattle’, Journal of Dairy Science, 102(8), 7435-7444.
  • Moreno, L., Merlos, A., Abramova, N. 2006, ‘Multi-sensor array used as an “electronic tonque” for mineral water analyses’, Sensors and Actuators B, 116, 130-134.
  • Pięk, M., Wojciechowska, A. Fendrych, K., Piech, R. ve Paczosa-Bator, B. 2019, ‘A simple way to modify selectivity of sodium sensitive electrodes by using organic conductive crystals’, Ionics, 25(5), 2311- 2321.
  • Rius, A., Callao, M. 2001, ‘Application of time series models to the monitoring of a sensor array analytical system’, Trends in Analytical Chemistry, 20, 168-177.
  • Saurina, J., Lopez-Aviles, E., Le Moal, Santiago, A. 2002, ‘Determination of calcium and total hardness in natural waters using a potentiometric sensor array’, Analytica Chimica Acta, 464, 89–98.
  • Shamsipur, M., Mizani, F., Mousavi, M. F., Alizadeh, N., Alizadeh, K., Eshghi, H., Karami, H. 2007, ‘A novel flow injection potentiometric graphite coated ion-selective electrode for the low level determination of uranyl ion’, Anal. Chim. Acta, 589, 22-32.
  • Xin, W.X., Zhang, Y.N. ve Yu, Y.X. 2016, ‘Determination of solubility of sodium salts in aqueous surfactant and stpp solutions using an ıon selective electrode’, Journal of Chemical and Engineering Data, 61(7), 2236-2243.
  • Yang, X., Hibberta, D. B., Alexanderb, P. W. 1998, ‘Flow injection potentiometry by poly(vinyl chloride)membrane electrodes with substituted azacrown ionophores for the determination of lead(II) and mercury(II) ions’, Anal. Chim. Acta, 372, 387-398.