N, N'-Dibenziliden-3,3'-dimetoksibenzidinin Sentezi, Karakterizasyonu ve Kuantum Kimyasal Hesaplama Çalışmaları

Bu çalışmada, termal olarak kararlı N, N'-Dibenziliden-3,3'-dimetoksibenzidin bileşiği, o-dianisidin ve benzaldehit arasındaki kondenzasyon reaksiyonu ile sentezlenmiştir. Sentezlenen bileşiğin karakterizasyonunda element analizi, FT-IR, H-NMR, TGA, XRD ve SEM,kullanılmıştır. Senteze ek olarak, sentezlenen molekülün kuantum kimyasal hesaplamaları, DFT metodu ile temel durumda B3LYP/6-31G ** temel seti ile yapılmıştır. Deneysel ve hesaplanan sonuçlar birbirleriyle karşılaştırılmıştır. Hesaplanan kimyasal kaymalar ve titreşim dalgalanmaları deneysel değerlerle uyuşmaktadır. Ek olarak, Mulliken yüklerini ve termodinamik özelliklere çözücü etkileri araştırılmıştır. Moleküler elektrostatik potansiyel haritası, sınır moleküler orbitaller, QSAR parametreleri ve geometrik özellikler teorik olarak elde edilmiştir.

Synthesis, Characterization and Quantum Chemical Computational Studies on the N,N'-Dibenzylidene-3,3'-dimethoxybenzidine

In the present study, the thermally stable N,N'-Dibenzylidene-3,3'-dimethoxybenzidine was synthesized by the condensation reaction between o-dianisidine and benzaldehyde. Elemental analysis, FT-IR, H-NMR, TGA, XRD and SEM was used to characterization of synthesized compound. In addition to the synthesis, the quantum chemical calculations of the synthesized molecule were performed using DFT method, B3LYP, in 6-31G** basis set in the ground state. Experimental and calculated results were compared with each other. The calculated chemical shifts and vibrational wavenumbers were in compromise with the experimental values. In addition, the solvent effects were investigated for the Mulliken charges and thermodynamic properties. The molecular electrostatic potential map, frontier molecular orbitals, QSAR parameters, and geometrical properties were obtained theoretically.

___

  • Akyüz, L., & Sarıpınar, E. (2013). Conformation depends on 4D-QSAR analysis using EC–GA method: pharmacophore identification and bioactivity prediction of TIBOs as non-nucleoside reverse transcriptase inhibitors. Journal of enzyme inhibition and medicinal chemistry, 28(4), 776-791.
  • Bachrach, S. M. (2008). Computational organic chemistry. Annual Reports Section" B"(Organic Chemistry), 104, 394-426.
  • Ebrahimi, H., Hadi, J., & Al-Ansari, H. (2013). A new series of Schiff bases derived from sulfa drugs and indole-3- carboxaldehyde: Synthesis, characterization, spectral and DFT computational studies. Journal of Molecular Structure, 1039, 37-45.
  • Fleming, I. (1977). Frontier orbitals and organic chemical reactions: Wiley.
  • Fukui, K. (1982). The role of frontier orbitals in chemical reactions (Nobel Lecture). Angewandte Chemie International Edition in English, 21(11), 801-809.
  • Gupta, K., Sutar, A. K., & Lin, C.-C. (2009). Polymer-supported Schiff base complexes in oxidation reactions. Coordination Chemistry Reviews, 253(13-14), 1926-1946.
  • Gümrükçü, G., Karaoğlan, G. K., Erdoğmuş, A., Gül, A., & Avcıata, U. (2012). A novel phthalocyanine conjugated with four salicylideneimino complexes: photophysics and fluorescence quenching studies. Dyes and Pigments, 95(2), 280-289.
  • Im, H., Kim, J., Sim, C., & Kim, T. H. (2018). Crystal structure of N, N′-dibenzyl-3, 3′- dimethoxybenzidine. Acta Crystallographica Section E: Crystallographic Communications, 74(3), 271-274.
  • Karelson, M., Lobanov, V. S., & Katritzky, A. R. (1996). Quantum-chemical descriptors in QSAR/QSPR studies. Chemical reviews, 96(3), 1027-1044.
  • Kaya, I., Yıldırım, M., & Kamacı, M. (2009). Synthesis and characterization of new polyphenols derived from o-dianisidine: the effect of substituent on solubility, thermal stability, and electrical conductivity, optical and electrochemical properties. European Polymer Journal, 45(5), 1586-1598.
  • Lorcy, D., Bellec, N., Fourmigué, M., & Avarvari, N. (2009). Tetrathiafulvalene-based group XV ligands: Synthesis, coordination chemistry and radical cation salts. Coordination Chemistry Reviews, 253(9-10), 1398-1438.
  • Okulik, N., & Jubert, A. H. (2005). Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Internet Electronic Journal of Molecular Design, 4(1), 17-30.
  • Politzer, P., Concha, M. C., & Murray, J. S. (2000). Density functional study of dimers of dimethylnitramine. International Journal of Quantum Chemistry, 80(2), 184-192.
  • Przybylski, P., Huczynski, A., Pyta, K., Brzezinski, B., & Bartl, F. (2009). Biological properties of Schiff bases and azo derivatives of phenols. Current Organic Chemistry, 13(2), 124-148.
  • Scrocco, E., & Tomasi, J. (1978). Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials Advances in quantum chemistry (Vol. 11, pp. 115-193): Elsevier.
  • Sinha, L., Prasad, O., Narayan, V., & Shukla, S. R. (2011). Raman, FT-IR spectroscopic analysis and first-order hyperpolarisability of 3-benzoyl-5-chlorouracil by first principles. Molecular Simulation, 37(2), 153-163.
  • Spartan 18 for Windows, M. a. L. T. a. U. s. G. W., Inc. 2017.
  • Sundararajan, M. L., Jeyakumar, T., Anandakumaran, J., & Selvan, B. K. (2014). Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: Spectral, thermal, XRD and antimicrobial studies. Spectrochimica acta part A: molecular and biomolecular spectroscopy, 131, 82-93.
  • Tanak, H. (2011). DFT computational modeling studies on 4-(2, 3- Dihydroxybenzylideneamino)-3-methyl-1H1, 2, 4-triazol-5 (4H)-one. Computational And Theoretical Chemistry, 967(1), 93-101.
  • Tanak, H., Semiz, L., Koçak, F., Ağar, A. A., & Özdemir, N. (2019). Molecular structure, spectroscopic and density functional studies on 2-{[(5-nitrothiophen-2-yl) methylidene] amino} phenol. Optik, 195, 163144.
  • Yalçın, Ş. P., Ceylan, Ü., Sarıoğlu, A. O., Sönmez, M., & Aygün, M. (2015). Synthesis, structural, spectral (FT-IR, 1H and 13C NMR and UV–Vis), NBO and first order hyperpolarizability analysis of N-(4- nitrophenyl)-2, 2-dibenzoylacetamide by density functional theory. Journal of Molecular Structure, 1098, 400-407.