Prefabrik Beton Duvar ve Tuğla Duvarın Çevresel Etkilerinin Karşılaştırmalı Yaşam Döngüsü Değerlendirmesi

Son yıllarda, yapı malzemelerinin ve bileşenlerinin çevresel etkilerinin değerlendirilmesine artan bir ilgi vardır. Bu çevresel etkiler göz önünde bulundurularak, kullanıcı ihtiyaçlarının karşılanması ve çevresel etkilerin en aza indirilmesi için uygun yapı malzemelerinin ve teknolojisinin seçimi çok önemlidir. Bu çalışmanın amacı, Yaşam Döngüsü Değerlendirmesi (YDD) metodolojisini kullanarak beşikten kapıya yaklaşımıyla prekast beton duvar ve tuğla duvar üretiminin çevresel etkilerini karşılaştırmaktır. Bu çalışmada, ISO 14040 ve 14044 standardlarına göre SimaPro 9.2 yazılımı kullanılarak YDD uygulanmıştır. Yaşam döngüsü etki değerlendirmesi için CML-IA baseline yöntemi ve Ecoinvent veri tabanı kullanılmıştır. Elde edilen sonuçlar, abiyotik tükenme ve deniz suyu ekotoksisitesi hariç tüm etki kategorilerinde tuğla duvarın prekast beton duvardan daha iyi çevresel performansa sahip olduğunu ortaya koymuştur. Prekast beton ve tuğla duvarın m2 başına küresel ısınma potansiyeli sırasıyla 2.35E+02 kg CO2 eq. ve 2.10E+02  kg CO2 eq. olarak hesaplanmıştır.

Comparative Life Cycle Assessment of the Environmental Impacts of Precast Concrete and Brick Walls

There is an increasing interest in assessing the environmental impacts of construction materials and their components in recent years. By considering these environmental impacts, the selection of suitable construction materials and technology is crucial for satisfying user needs and minimizing environmental impacts. The aim of this study is to compare the environmental impacts of precast concrete wall and brick wall production with cradle to gate approach by using Life Cycle Assessment (LCA) approach. In this study, LCA was applied based on ISO 14040 and 14044 by using SimaPro 9.2 software. CML-IA baseline method and Ecoinvent database was used for the life cycle impact assessment. The obtained results revealed that brick wall has better environmental performance than precast concrete wall in all impact categories except abiotic depletion and marine aquatic ecotoxicity. The global warming potential of the precast concrete and brick wall per m2 were calculated as 2.35E+02 kg CO2 eq. and 2.10E+02  kg CO2 eq, respectively.

___

  • Omar, W.M.S.W., Doh, J.H., Panuwatwanich, K., Miller, D. 2014. Assessment of the embodied carbon in precast concrete wall panels using a hybrid life cycle assessment approach in Malaysia. Sustainable Cities and Society, 10, 101-111.
  • Mao, C., Shen, Q.P., Shen, L.Y., Tang, L.Y.N. 2013. Comparative study of greenhouse gas emissions between off-site prefabrication and conventional construction methods: Two case studies of residential projects. Energy and Buildings, 66, 165-176.
  • Richard, R.B. 2005. Industrialised building systems: reproduction before automation and robotics. Automation in Construction, 14(4), 442-451.
  • Dong, Y.H., Jaillon, L., Poon, C.S. 2016. Life Cycle Assessment of Precast and Cast-in-Situ Construction. Expanding Boundaries: Systems Thinking in the Built Environment, 426-429.
  • Turkish Precast Concrete Association. 2021. Sektör Raporu. https://www.prefab.org.tr/icerik1bc6.html?yayinlar/sektor-raporu&tr. (Access date: 07.11.2022). Life Cycle Assessment of Precast Concrete and Brick Wall 7
  • Giama, E., Papadopoulos, A.M. 2015. Assessment tools for the environmental evaluation of concrete, plaster and brick elements production. Journal of Cleaner Production, 99, 75-85.
  • Almeida, M.I., Dias, A.C., Demertzi, M., Arroja, L. 2015. Contribution to the development of product category rules for ceramic bricks. Journal of Cleaner Production, 92, 206-215.
  • Han, B.L., Wang, R.S., Yao, L., Liu, H.X., Wang, Z.G. 2015. Life cycle assessment of ceramic facade material and its comparative analysis with three other common facade materials. Journal of Cleaner Production, 99, 86-93.
  • Ersan, Y.C., Gulcimen, S., Imis, T.N., Saygin, O., Uzal, N. 2022. Life cycle assessment of lightweight concrete containing recycled plastics and fly ash. European Journal of Environmental and Civil Engineering, 26(7), 2722-2735.
  • Ozkan, A., Gunkaya, Z., Tok, G., Karacasulu, L., Metesoy, M., Banar, M., Kara, A. 2016. Life Cycle Assessment and Life Cycle Cost Analysis of Magnesia Spinel Brick Production. Sustainability, 8(7).
  • Kua, H.W., Kamath, S. 2014. An attributional and consequential life cycle assessment of substituting concrete with bricks. Journal of Cleaner Production, 81, 190-200.
  • Landi, F.F.D., Fabiani, C., Ubertini, F., Pisello, A.L. 2022. Life cycle assessment of a novel fired smart clay brick monitoring system for masonry buildings. Sustainable Energy Technologies and Assessments, 50.
  • Yilmaz, E., Aykanat, B., Comak, B. 2022. Environmental life cycle assessment of rockwool filled aluminum sandwich facade panels in Turkey. Journal of Building Engineering, 50.
  • Beudon, C., Oudjene, M., Djedid, A., Annan, C.D., Fafard, M. 2022. Life Cycle Assessment of an Innovative Hybrid Highway Bridge Made of an Aluminum Deck and Glulam Timber Beams. Buildings, 12(10).
  • Hottle, T., Hawkins, T.R., Chiquelin, C., Lange, B., Young, B., Sun, P.P., Elgowainy, A.Wang, M.C. 2022. Environmental life-cycle assessment of concrete produced in the United States. Journal of Cleaner Production, 363.
  • Mocharla, I.R., Selvam, R., Govindaraj, V., Muthu, M. 2022. Performance and life-cycle assessment of highvolume fly ash concrete mixes containing steel slag sand. Construction and Building Materials, 341.
  • Ali, B., El Ouni, M.H., Kurda, R. 2022. Life cycle assessment (LCA) of precast concrete blocks utilizing ground granulated blast furnace slag. Environmental Science and Pollution Research.
  • Nikbin, I.M., Dezhampanah, S., Charkhtab, S., Mehdipour, S., Shahvareh, I., Ebrahimi, M., Pournasir, A.Pourghorban, H. 2022. Life cycle assessment and mechanical properties of high strength steel fiber reinforced concrete containing waste PET bottle. Construction and Building Materials, 337.
  • Roy, K., Dani, A.A., Ichhpuni, H., Fang, Z.Y., Lim, J.B.P. 2022. Improving Sustainability of Steel Roofs: Life Cycle Assessment of a Case Study Roof. Applied Sciences-Basel, 12(12).
  • Balasbaneh, A.T., Ramli, M.Z. 2020. A comparative life cycle assessment (LCA) of concrete and steelprefabricated prefinished volumetric construction structures in Malaysia. Environmental Science and Pollution Research, 27(34), 43186-43201.
  • Nicoletti, G.M., Notarnicola, B., Tassielli, G. 2002. Comparative Life Cycle Assessment of flooring materials: ceramic versus marble tiles. Journal of Cleaner Production, 10(3), 283-296.
  • Traverso, M., Rizzo, G., Finkbeiner, M. 2010. Environmental performance of building materials: life cycle assessment of a typical Sicilian marble. International Journal of Life Cycle Assessment, 15(1), 104-114.
  • Li, X.J., Xie, W.J., Jim, C.Y., Feng, F. 2021. Holistic LCA evaluation of the carbon footprint of prefabricated concrete stairs. Journal of Cleaner Production, 329.
  • Wang, S.Z., Sinha, R. 2021. Life Cycle Assessment of Different Prefabricated Rates for Building Construction. Buildings, 11(11).
  • Wen, T.J., Siong, H.C., Noor, Z.Z. 2015. Assessment of embodied energy and global warming potential of building construction using life cycle analysis approach: Case studies of residential buildings in Iskandar Malaysia. Energy and Buildings, 93, 295-302.
  • Faludi, J., Lepech, M.D., Loisos, G. 2012. Using Life Cycle Assessment Methods to Guide Architectural Decision-Making for Sustainable Prefabricated Modular Buildings. Journal of Green Building, 7(3), 151- 170. Life Cycle Assessment of Precast Concrete and Brick Wall 8
  • Bonamente, E., Cotana, F. 2015. Carbon and Energy Footprints of Prefabricated Industrial Buildings: A Systematic Life Cycle Assessment Analysis. Energies, 8(11), 12685-12701.
  • ISO. 2006. 14040:2006 Environmental Management Life Cycle Assessment Principles and Framework.
  • ISO. 2006. 14044: 2006 Environmental Management Life Cycle Assessment Requirements and Guidelines.
  • Ecoinvent Centre. 2022. Ecoinvent Data v3. Swiss Centre for Life Cycle Inventories. https://ecoinvent.org/. (Access date: 05.11.2022).
  • Pre Consultants,. 2016. SimaPro Software. https://simapro.com/ (Access date: 05.11.2022).
  • University of Leiden. 2016. CML-IA Characterisation Factors. https://www.universiteitleiden.nl/en/science/environmental-sciences/tools-and-data (Acess date: 05.11.2022)
Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi-Cover
  • ISSN: 1012-2354
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1985
  • Yayıncı: Erciyes Üniversitesi