Al-B İkili Alaşımının Hidrojen Üretim Performansına Bi Katkılamanın Etkisi

Yaygın olarak kullanılmakta olan fosil yakıtların tükenmeye başlaması ve bu kaynaklardan elde edilen enerji maliyetlerindeki artışlar, enerjinin alternatif, temiz, yenilenebilir ve sürdürülebilir sistemlerden elde edilmesini zorunlu hale getirmiştir. Alternatif ve temiz enerji kaynağı olarak hidrojen, geleceğin yakıtı olarak kabul edilip farklı şekilde ve amaçlarda kullanılabilirliği, yüksek enerji yoğunluğu gibi alternatif enerji kaynaklarının genel özelliklerine uyan bir enerji kaynağı olarak görülmektedir. Alüminyum metali/alaşımı hidroliz yolu ile hidrojen gazı üretiminde sürdürülebilir enerji sistemlerinin geliştirilebilmesi için kullanılmaktadır. Bu çalışmada alkali çözeltide içerisinde Al-B ikili ve Al-B-Bi üçlü alaşımlarının farklı sıcaklıklarda hidrojen üretim performansı araştırılmıştır. Alaşımların döküm işlemleri argon atmosferi altında indüksiyon fırınında gerçekleştirilmiştir. Elde edilen ikili ve üçlü alaşımlardaki alüminyumun oranı ağ. %99 civarındadır. Bi katkılı üçlü Al alaşımına ait hidroliz deneylerinden elde edilen sonuçlar ikili Al-B alaşımının sonuçları ile kıyaslandığında çok yüksek bir hidrojen üretim hızına ulaşmıştır. Gaz salınım oranı Al-B ikili alaşımı için 40 oC’de 0.77 ml dk-1 cm-2 iken Al-B-Bi üçlü alaşımı için çok yüksek bir artış ile 63.58 ml dk-1 cm-2 değeri elde edilmiştir.

Effect of Bi Doping on Hydrogen Production Performance of Al-B Binary Alloy

Abstract: Due to the consumption of widely used fossil fuels and the increase in energy costs from these sources, it has become necessary to obtain energy from alternative, clean, renewable and sustainable systems. As an alternative and clean energy source, hydrogen is accepted as the fuel of the future. Hydrogen is seen as an important energy source due to its features such as being usable in different ways and for different purposes, and high energy density. Aluminum metal/alloy is used to develop sustainable energy systems in the production of hydrogen gas by hydrolysis. In this study, hydrogen production performance of Al-B binary and Al-B-Bi ternary alloys in alkali solution at different temperatures was investigated. The casting processes of the alloys were carried out in an induction furnace under an argon atmosphere. The ratio of aluminum in the obtained binary and ternary alloys is approximately 99 wt.%. The results obtained from the hydrolysis experiments of the Bi-doped ternary Al alloy reached a very high hydrogen production rate when compared to the results of the binary Al-B alloy. While the gas emission rate was 0.77 ml min-1 cm-2 at 40 oC for the Al-B binary alloy, a very high increase was obtained for the Al-B-Bi ternary alloy, with a value of 63.58 ml min-1 cm-2.

___

  • [1] H. Wang, Y. Chang, S. Dong, Z. Lei, Q. Zhu, P. Luo, Z. Xie, Investigation on hydrogen production using multicomponent aluminum alloys at mild conditions and its mechanism, International journal of hydrogen energy 38(3) (2013) 1236-1243.
  • [2] W. Lattin, V.P. Utgikar, Transition to hydrogen economy in the United States: A 2006 status report, International Journal of Hydrogen Energy 32(15) (2007) 3230-3237.
  • [3] H. Wang, D.Y. Leung, M. Leung, M. Ni, A review on hydrogen production using aluminum and aluminum alloys, Renewable and sustainable energy reviews 13(4) (2009) 845-853.
  • [4] B. Tarasov, V. Burnasheva, M. Lototskiy, V. Yartys, Methods for hydrogen storage and metallic hydrides application, Int Sci J Alternative Energy Ecol ISJAEE 12(32) (2005) 14-37.
  • [5] M.F. Kaya, O. Kahveci, H. Erol, A. Akkaya, Effect of low B addition on Al-Zn alloy's hydrogen production performance, international journal of hydrogen energy 46(29) (2021) 15192-15202.
  • [6] L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications, Materials for sustainable energy: a collection of peer-reviewed research and review articles from nature publishing group, World Scientific2011, pp. 265-270.
  • [7] O. Kahveci, Antimony and boron support to aluminum's hydrolysis performance and an application of PEM fuel cell, Fuel 324 (2022) 124782.
  • [8] M.q. Fan, L.x. Sun, F. Xu, Experiment assessment of hydrogen production from activated aluminum alloys in portable generator for fuel cell applications, Energy 35(7) (2010) 2922-2926.
  • [9] L. Soler, J. Macanás, M. Munoz, J. Casado, Aluminum and aluminum alloys as sources of hydrogen for fuel cell applications, Journal of power sources 169(1) (2007) 144-149.
  • [10] T. Huang, Q. Gao, D. Liu, S. Xu, C. Guo, J. Zou, C. Wei, Preparation of Al-Ga-In-Sn-Bi quinary alloy and its hydrogen production via water splitting, international journal of hydrogen energy 40(5) (2015) 2354-2362.
  • [11] M.-q. Fan, L.-x. Sun, F. Xu, Study of the controllable reactivity of aluminum alloys and their promising application for hydrogen generation, Energy Conversion and Management 51(3) (2010) 594-599.
  • [12] Y. Liu, J.c. An, W.z. Jin, J. Cui, W. Zhang, Insight into the effect of In addition on hydrogen generation behavior and hydrolysis mechanism of Al‐based ternary alloys in distilled water—A new active Al‐Ga‐In hydrolysis hydrogen generation alloy, International Journal of Energy Research 43(15) (2019) 8973-8984.
  • [13] D. Qiao, Y. Lu, Z. Tang, X. Fan, T. Wang, T. Li, P.K. Liaw, The superior hydrogen-generation performance of multi-component Al alloys by the hydrolysis reaction, International Journal of Hydrogen Energy 44(7) (2019) 3527-3537.
  • [14] T. He, W. Chen, W. Wang, S. Du, S. Deng, Microstructure and hydrogen production of the rapidly solidified Al–Mg-Ga-In-Sn alloy, Journal of Alloys and Compounds 827 (2020) 154290.
  • [15] F. Zhang, K. Edalati, M. Arita, Z. Horita, Fast hydrolysis and hydrogen generation on Al-Bi alloys and Al-Bi-C composites synthesized by high-pressure torsion, International Journal of Hydrogen Energy 42(49) (2017) 29121-29130.
  • [16] M.-Q. Fan, F. Xu, L.-X. Sun, Hydrogen generation by hydrolysis reaction of ball-milled Al− Bi alloys, Energy & fuels 21(4) (2007) 2294-2298.
  • [17] Y. Liu, X. Liu, X. Chen, S. Yang, C. Wang, Hydrogen generation from hydrolysis of activated Al-Bi, Al-Sn powders prepared by gas atomization method, International Journal of Hydrogen Energy 42(16) (2017) 10943-10951.
  • [18] T. Wang, F. Xu, L. Sun, L. Miao, L. Liao, S. Wei, Q. Yin, K. Zhang, Y. Li, Y. Wu, Improved performance of hydrogen generation for Al–Bi-CNTs composite by spark plasma sintering, Journal of Alloys and Compounds 860 (2021) 157925.
  • [19] X. Liu, P. Zhang, J. Xue, C. Zhu, X. Li, Z. Wang, High energy efficiency of Al-based anodes for Al-air battery by simultaneous addition of Mn and Sb, Chemical Engineering Journal 417 (2021) 128006.
  • [20] A. Parmuzina, O. Kravchenko, Activation of aluminium metal to evolve hydrogen from water, International Journal of Hydrogen Energy 33(12) (2008) 3073-3076.
  • [21] F. Zhang, K. Edalati, M. Arita, Z. Horita, Hydrolytic hydrogen production on Al–Sn–Zn alloys processed by high-pressure torsion, Materials 11(7) (2018) 1209.
  • [22] O. Kahveci, M.F. Kaya, Hydrogen production from Al–Cu alloy using electric vehicle's waste DC motor coils, International Journal of Hydrogen Energy 47(24) (2022) 12179-12188.
  • [23] H.-S. Yoo, H.-Y. Ryu, S.-S. Cho, M.-H. Han, K.-S. Bae, J.-H. Lee, Effect of Si content on H2 production using Al–Si alloy powders, International journal of hydrogen energy 36(23) (2011) 15111-15118.
  • [24] H. Hu, M. Qiao, Y. Pei, K. Fan, H. Li, B. Zong, X. Zhang, Kinetics of hydrogen evolution in alkali leaching of rapidly quenched Ni–Al alloy, Applied Catalysis A: General 252(1) (2003) 173-183.
Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi-Cover
  • ISSN: 1012-2354
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1985
  • Yayıncı: Erciyes Üniversitesi