Phytophthora capsici Leon. ile enfekte edilen duyarlı ve dayanıklı biber genotiplerinin köklerinde antioksidatif tepkiler ve lipid peroksidasyonu

Phytophthora capsici’ye dayanıklılıkları faklı olan üç biber genotipi [dayanıklı PM-702, duyarlı Kahramanmaraş-Acı (KM-Acı) ve Demre-8] peroksidaz (EC 1.11.1.7) aktivitesini, fenolik bileşikler ve bir lipid peroksidasyon ürünü olan MDA (malondialdehit)’yı analiz etmek için farklı zoospor konsantrasyonları (102, 103 ve 104 zoospor/ml) ile inokule edilmiştir. Enfeksiyondan sonra altıncı günde biber genotiplerinin köklerinde zoospor konsantrasyonlarına bağlı olarak peroksidaz aktivitesinde önemli farklılıklar gözlenmiştir. İnokule edilen dayanıklı PM-702 genotipinde peroksidaz aktivitesi artmış ve kontrol gruplarındaki en yüksek peroksidaz aktivitesi dayanıklı PM-702 genotipinde saptanmıştır (P

Antioxidative Reactions and Lipid Peroxidation in Roots of Susceptible and Resistant Pepper Genotypes infected with Phytophthora capsici Leon

Three pepper genotypes (resistant PM-702, susceptible Kahramanmaraş- Hot (KM-Hot) and Demre-8) with, different resistance to Phytophthora capsici were inoculated with different concentration of zoospores (102, 103 and 104 zoospore/ml) to analyze of peroxidase (EC 1.11.1.7) activity, phenolic compounds and MDA (Malondialdehyde) which is a product of lipid peroxidation. Samples were collected from the roots of three pepper genotypes on the 6th days after infection. Important differences were observed in peroxidase activity with respect to zoospore concentration and type of pepper genotypes. Activity of peroxidase was increased in inoculated roots of resistant PM-702 genotype and the highest peroxidase activity in non-infected (control) roots was recorded in resistant genotype PM-702. Although, phenolic compounds were increased in PM-702 and KM-Hot in relation to inoculum concentrations. It was decreased in Demre-8 genotype. When all three pepper genotypes were compared in terms of MDA content on roots. Amount of MDA in the roots of DEM-8 genotype was significantly higher than those of PM-702 and KM-Hot genotypes (P<0.01).

___

  • Abak, K. ve Pitrat, M., Biberlerde kök boğazı yanıklığı (Phytophthora capsici Leon.) hastalığına dayanıklılık üzerinde bir araştırma. A.Ü.Z.F. Yıllığı, 29 (2-3-4), 943- 947, 1981
  • Leonian, L. H., Stem and fruit blight of peppers caused by Phytophthora capsici sp. nov. Phytopathol., 12, 401-408, 1922.
  • Anonim, Zirai Mücadele Teknik Talimatı, Sebze Hastalıkları, Tarım ve Köyişleri Bakanlığı Yayınları, 2 (435), Ankara, 1985.
  • Çınar, A. ve Biçici, M., Control of Phytophthora capsici Leonian on the red peppers, J. Turk Phytopathol., 6 (3), 119-124, 1977.
  • Yıldız, M. ve Delen, N., Some results of fungicide tests on Phytophthora capsici Leon. of pepper, J. Turk Phytopathol., 8(1), 29-39, 1979.
  • Kim, Y.J., et al., Expression of age-related resistance in pepper plants infected with P. capsici, Plant Dis., 73, 745- 747, 1989. 7. Üstün, A.S., Biberlerde kök boğazı yanıklığı (Phyhophtora capsici Leon.) hastalığına dayanıklılığın nedenlerinin incelenmesi, Doktora tezi, Ankara Üniversitesi, Ankara, 1990. ve biyokimyasal olarak
  • Özcan, S., et al., Genetik mühendisliği ve uygulamaları. Bitki Biyoteknolojisi II, 20, 261-283pp, 2001.
  • Palloix, A., et al., Phytophthora root rot pepper, influence of host genotype and pathogen starin on the inoculum density-disease severity relationships, Phytopathol., 123(1), 25-33, 1988.
  • Walters, D.,et al., Induced resistance for plant disease control: Maximizing the efficacy of resistance elicitors, Phytopathol., 95(12), 1368-1373, 2005.
  • Güncan, A. ve Durmuşoğlu, E., Bitkisel kökenli doğal insektisitler üzerine bir değerlendirme, HASAD, 233, 26- 32, 2004.
  • He, C.Y., et al., Induction of systemic disease resistance and pathogen defence responses in Asparagus officinalis inoculated with nonpathogenic strains of Fusarium oxysporum, Plant Pathol., 51, 225-230, 2002.
  • Małolepsza, U. and Rózalska, S., Nitric oxide and hydrogen peroxide in tomato resistance. Nitric oxide modulates hydrogen peroxide level in o-hydroxyethylorutin-induced resistance to Botrytis cinerea in tomato, Plant Physiol. Biochem., 43(6), 623-635, 2005.
  • Mohammadi, M. and Kazemi, H.,. Changes in peroxidase and polyphenol activity in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance, Plant Sci., 162, 491-498, 2002.
  • Delledone, M., et al., Reactive oxygen intermediates modulates nitric oxide signalling in the hypersensitive disease-resistance response, Plant Physiol. Biochem., 40, 605-610, 2002.
  • Smirnoff N., Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Smirnoff N, editor. Antioxidants and reactive oxygen species in plants. Blackwell Publishing, 53–86, Oxford, 2005.
  • Hahn, M.G., et al.,. Quanatitative localization of phytoalexin glyceollin I in the relation to fungal hyphae in soybean roots infected with Phytophthora megasperma f.sp. glycinea, Plant Physiol., 77, 591-601, 1985.
  • Ward, E.W.B. and Stoessl, A., Isolataion of the phyoalexin capsidiol from pepper leaves and stems, 66th Annu. Meet. Am. Phytopat. Soc., 11-15, Vancouver, 1974.
  • Harrıgon, W.F. and Mccane, M.E., . Laborotory methods in microbiology, recipes to stains, reagents and media. Academic Press, 258, London and Newyork, 1966.
  • Zheng, H.Z., et al., Active changes of lignification- related enzymes in pepper response to Glomus intraradices and/ or Phytophthora capsici, J. Zhejaiang Univer. Sci. 6(8),778- 786, 2005.
  • Lin , C.C. and Kao, C.H., Cell wall peroxidase activity, hydrogen peroxide level and NaCl-inhibited root growth of rice seedlings, Plant Soil, 230, 135-143, 2001.
  • Singleton, V.L. et al., Analysis of total phenols and other oxidation substrates and antioxidants by means of the Folin- Ciocalteu reagent, Methods Enzymol., 152-178, 1965.
  • Heath R.L. and Packer L., Photoperoxidation in isolated chloroplasts I. kinetics and stoichiometryof fatty acid peroxidation, Arch Biochem. Biophy., 125, 189-198, 1968.
  • Bolwell, G.P., et al., The apoplastic oxidative burst in response to biotic stress in plants: a tree component system, J. Exp. Bot., 53, 1367–1376, 2002.
  • Torres, M.A., et al., Reactive oxygen species sinalling in response to pathogen, Plant Physiol., 141, 373-378, 2006.
  • Hahlbrock, K., et al., Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant /pathogen interactions, Proc. Natl. Acad. Sci., 14569-14576, 2003.
  • Yao, K., et al., . Creation of metabolism sink for tryptophan alters phenylapropanoid pathway and rhe susceptibiliy of potato Phytophthora infestans, Plant Cell, 7, 1787-1799, 1995.
  • Vidhyasekaran, P., Fungal pathogenesis in Plants and Crops- Molecular Biology and Host defense mechanisms , 2nd ed., s. 307, India, 2007.
  • Candela, M.E., et al., Soluble phenolics acids in Capsicum annuum stems infected with Phytophthora capsici, Plant Pathol., 44, 116-123, 1995.
  • Gayosa, C., et al., Oxidative metabolism and phenolic compounds in Capsicum annuum L. var. annuum infected by Phytophthora capsici Leon, Sci. Hortic., 102 (1), 1- 13, 2004.
  • Ponmurugan, P. and Baby, U.I., Resistant and susceptible cultıvars of tea in realtion to Phomopsis disease, PlNT Pathol. J., 6 (1), 91-94, 2007.
  • Fu, J., Huang B., Involvement of antioxidants and lipid peroxidation in the adaptationof two cool –season grasses to localized drought stres, Environ. Exp. Bot., 45, 105-114, 2001.
  • Heath, M.C., Signalling between pathogenic rust fungi and resistant or susceptible host plants, Ann. Bot., 80, 713-720, 1997.
Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi-Cover
  • ISSN: 1012-2354
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1985
  • Yayıncı: Erciyes Üniversitesi