NACA2415 Kanat Modeli Etrafındaki Akışın DBD Plazma Girdap Üreteçleri ile Kontrolü

Bu çalışmada, girdap üreteci olarak dielektrik bariyer deşarjı plazma aktüatörlerinin NACA2415 kanat modelinin basınç katsayısı üzerine etkileri deneysel olarak düşük Reynolds sayısında incelenmiştir. Dielektrik bariyer deşarjı plazma girdap üreteçleri kanat modelinin ön kısmına (x/C=0.1) yerleştirilmiştir. Kuvvet ölçümleri altı eksenli yük hücresi kullanılarak ve basınç ölçümleri pitot statik tüpü ile yapılmıştır. Kanat modeli etrafındaki basınç dağılımları basınç transduceri ve dairesel tarama vanası kullanılarak ölçülmüştür. Deneysel sonuçlar, dielektrik bariyer deşarjı girdap üreteçleri belirli elektriksel parametrelerde sürüldüğünde kaldırma katsayısını önemli ölçüde arttırdığı ve stol açısını indirgenmiş akış etkisiyle geciktirdiğini göstermiştir. Dahası, co-rotating dielektrik bariyer deşarjı girdap üreteçlerinin sürüklemeyi katsayısını azaltmada counter-rotating dielektrik bariyer deşarjı tipine göre daha etkili olduğu gözlemlenmiştir. Ayrıca, kanat yüzeyinde üç boyutlu akış yapısı span yönünde alınan basınç ölçümleri sayesinde her iki girdap üreteci tarafından da oluşturulduğu ortaya gözlemlenmiştir. İlave olarak, her iki plazma girdap üreteçlerinin de sürükleme katsayısı üzerine etkileri stol açısında daha az iken stol öncesi ve sonrası durumlarda daha fazla olduğu gözlemlenmiştir.

Active Flow Control with DBD Plasma Vortex Generators around a NACA 2415 Airfoil

In this study, the effect of dielectric barrier discharge vortex generator (DBD VGs) plasma actuators on pressure coefficients of a NACA2415 airfoil are investigated experimentally at low Reynolds number. The DBD plasma VGs are placed at the leading edge of the airfoil (x/C=0.1). Force measurements with a six-axis load cell and pressure measurements with a pitot static tube are conducted. The pressure distributions over the airfoil are measured using a scan-valve unit and a pressure transducer. The experimental results showed that when the dielectric barrier discharge vortex generators were driven at a specific electrical parameter, the lift coefficient of the airfoil is increased significantly and the stall angle was postponed by induced flow effect. Moreover, the co-rotating dielectric barrier discharge vortex generators type is more effective than the counter-rotating type in reducing the drag coefficient. Furthermore, the 3D flow structure for both types of vortex generators was observed at the surface of the airfoil by using pressure measurements along with spanwise direction. In addition, it appears that the effect is less in the case of the stall angle in both plasma actuated state for drag coefficient, but they are more effective in the pre-stall angle and post-stall cases.

___

  • Referans1 Wang, J. J., Li, Y. C., Choi, K. S. 2008. Gurney Flap-Lift Enhancement, Mechanisms and Applications. Progress in Aerospace Sciences, 44(2008), 22-47.
  • Referans2 Zhang, P. F., Liu, A. B., Wang, J. J. 2009. Aerodynamic Modification of a NACA 0012 Airfoil by Trailing-Edge Plasma Gurney Flap. AIAA Journal, 47(2009), 2467-2474.
  • Referans3 Zhao, H., Wu, J. Z.., Luo, J. S. 2004. Turbulent Drag Reduction by Traveling Wave of Flexible Wall. Fluid Dynamics Research, 34(2004), 175-198.
  • Referans4 Itoh, M., Tamano, S. 2012. Drag Reduction in Turbulent Boundary Layers by Spanwise Travelling Waves with Wall Deformation, Journal of Turbulence, 13(2012), 1-26.
  • Referans5 Saddoughi, S., Bennett, G., Boespflug, M., Puterbaugh, S. L., Wadia, A. R. 2015. Experimental Investigation of Tip Clearance Flow in a Transonic Compressor with and without Plasma Actuators. Journal of Turbomachinery, 137(2015), 1-10.
  • Referans6 Jukes, T., Choi, K. S. 2013. On the Formation of Streamwise Vortices by Plasma Vortex Generators. Journal of Fluid Mechanics, 733(2013), 370-393.
  • Referans7 Jukes, T., Choi, K. S. 2012. Dielectric-Barrier-Discharge Vortex Generators: Characterization and Optimization for Flow Separation Control. Experiments in Fluids, 52(2012), 329-345.
  • Referans8 Segawa T., Furutani H. 2013. Flow Control on a NACA 4418 Using Dielectric-Barrier-Discharge Vortex Generators. AIAA Journal, 51(2013), 452-464.
  • Referans9 Choi, K. S., Jukes, T. N., Whalley, R. D., Feng, L. H., Wang, J. J., Matsunuma, T., Segawa, T. 2015. Plasma Virtual Actuators for Flow Control. Journal of Flow Control, Measurement & Visualization, 3(2015), 22-34.
  • Referans10 Akbıyık, H., Yavuz, H., Akansu, Y. E. 2016. Investigation of the Effect of the Plasma Actuatorts Vertically Placed on the Spanwise of NACA0015 Airfoil. 8th International Exergy, Energy and Environment Symposium (IEEES-8), 1-4 Mayıs, Antalya.
  • Referans11 Aram, S., Shan, H., Lee, Y. T. 2016. Application of an Integrated Flow and Plasma Actuation Model to an Airfoil. AIAA Journal, 54(2016), 2201-2210.
  • Referans12 Khoshkhoo, R., Jahangirian, A. 2016. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode. Plasma Science and Technology, 18(2016), 933-942.
  • Referans13 Sun, M., Yang, B., Peng, T., Lei, M. 2016. Optimum Duty Cycle of Unsteady Plasma Aerodynamic Actuation for NACA0015 Airfoil Stall Separation Control. Plasma Science and Technology, 18(2016), 680-685.
  • Referans14 Zhang, X., Huang, Y., Wang, X., Wang, W., Tang, K., Li, H. 2016. Turbulent Boundary Layer Separation Control Using Plasma Actuator at Reynolds Number 2000000. Chinese Journal of Aeronautics, 29(2016), 1237-1246.
  • Referans15 Jukes, T., Choi, K. S. 2009. Flow Control around a Circular Cylinder Using Pulsed Dielectric Barrier Discharge Surface Plasma. Physics of Fluids, 21(2009), 1-12.
  • Referans16 Moreau, E. 2007. Airflow Control by Non-thermal Plasma Actuators. Journal of Physics D: Applied Physics, 40(2007), 605-636.
  • Referans17 Grundmann, S., Tropea, C. 2008. Active Cancellation of Artificially Introduced Tollmien-Schlichting Waves Using Plasma Actuators. Experiments in Fluids 44(2008), 795-806.
  • Referans18 Jukes, T., Choi, K. S., Johnson, G., Scott, S. 2006. Turbulent Drag Reduction by Surface Plasma Through Spanwise Flow Oscillation. In: 3rd AIAA Flow Control Conference, 5-8 Haziran, California.
  • Referans19 Choi, K. S., Jukes, T., Whalley, R., 2011. Turbulent Boundary-Layer Control with Plasma Actuators. Philosophical Transactions of the Royal Society A, 369(2011), 1443-1458.
  • Referans20 Okita, Y., Jukes, T., Choi, K. S., Nakamura, K. 2008. Flow Reattachment over an Airfoil Using Surface Plasma Actuator. 4th AIAA Flow Control Conference, 23-26 Haziran, Washington.
  • Referans21 Porter, C., Abbas, A., Cohen, K., McLaughlin, T., Enloe, C. L. 2009 Spatially Distributed Forcing and Jet Vectoring with a Plasma Actuator. AIAA Journal, 47(2009), 1368-1378.
  • Referans22 Bolitho, M., Jacob, J. 2008. Thrust Vectoring Flow Control Using Plasma Synthetic Jet Actuators. 46th AIAA Aerospace Sciences Meeting and Exhibit, 7-10 Ocak, Nevada.
  • Referans23 Mueller, T. J. 1999. Aerodynamic Measurements at Low Reynolds Numbers for Fixed Wing Micro-Air Vehicles. Development and Operation of UAVs for Military and Civil Applications, Hessert Center for Aerospace Research, University of Notre Dame, 8.1-8.32.
  • Referans24 Horton, H. P. 1968. Laminar Separation Bubbles in Two and Three Dimensional Incompressible Flow, University of London, UK.