Bendiokarb İnsektisitinin İnsan Lökositlerinde Lipid Peroksidasyonu, Antioksidan Enzimler ve DNA Hasarı Üzerindeki Etkileri

Bu çalışma da karbamat grubundan bir insektisit olan Bendiokarb’ın artan dozlarının insan kan hücreleri üzerine in vitro koşullarda toksik etkisini komet testi, total antioksidan kapasite tayini, antioksidan enzim aktivitesi ve Malondialdehit (MDA) seviyesini değerlendirmek suretiyle belirlemeyi amaçladık. Sigara ve alkol kullanmayan, çalıştığı ortamda herhangi bir kimyasal maddeye maruz kalmayan sağlıklı 6 erkek bireyden heparinli tüplere alınan kan örneklerinden lökosit izolasyonu yapıldı ve sonra artan dozlarda Bendiokarb’a (20, 40, 80, 160 µg/mL) maruz bırakılmıştır. Komet testi, Demir İndirgeme Antioksidan Kapasitesi (FRAP), 2-2'Azinobis 3-Ethilbenzotiazolin-6-Sülfonik Asit (ABTS/TEAC) analizleri ile antioksidan enzimler olan Süperoksit dismutaz (SOD), Katalaz (CAT), Glutatyon peroksidaz (GPx) ve lipid peroksidasyon göstergesi olan MDA düzeyleri üzerine etkileri değerlendirilmiştir. Çalışma sonunda antioksidan enzim düzeylerinin doz artışına bağlı olarak anlamlı azaldığı, tüm dozlarda ise MDA düzeylerinin anlamlı olarak arttığı belirlendi (p

Effects of Bendiocarb Insecticide on Lipid Peroxidation, Antioxidant Enzymes and DNA Damage in Human Leucocytes

In this study, we aimed to determine the toxic effect of increasing doses of Bendiocarb, an insecticide from carbamate group, on human blood cells in vitro via by Comet test, determination of total antioxidant capacity, antioxidant enzyme activity and malondialdehyde (MDA) level. Leukocyte isolation was performed from blood samples taken from 6 healthy male individuals who did not smoke and alcohol use and were not exposed to any chemicals in the working environment, and then exposed to increasing doses of Bendiocarb (20, 40, 80, 160 µg / mL) and Comet test, Iron Reduction Antioxidant Capacity (FRAP), 2-2'Azinobis 3-Ethylbenzothiazoline-6-Sulfonic Acid (ABTS/TEAC) analysis with Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPx) and MDA were evaluated. At the end of the study, it was determined that antioxidant enzyme levels decreased significantly due to dose increase, whereas MDA levels increased significantly in all doses (p

___

  • [1] Çiftçioğlu, G., Issa, G. 2006. Çevre ve Gıdalardaki Pestisit Kalıntılarının Halk Sağlığına Etkisi. İstanbul Üniversitesi Veteriner Fakültesi Dergisi, 32(3), 91-96. [2] Alp, H., Aytekin, İ., Atakişi, O. 2011. Ratlardaki Akut Malathion Toksisitesinin Neden Olduğu Oksidatif Stres Üzerine Kafeik asit Fenil Ester ve Elarjik Asitin Etkileri. Atatürk Üniversitesi, Veteriner Bilimleri Dergisi, 6, 117-24.
  • [3] Öztürk, D. 2009. Cyprinus carpio’da Malathion Etkisinde Lipit Peroksidasyonu ve Serum Steroid Hormon Düzeylerindeki Değişimler. Çukurova Üniversitesi, Adana, Yüksek Lisans Tezi, 64s, Adana.
  • [4] Petrovova, E., Purzyc, H., Mazensky, D. Torma, N., Sopoliga, I., Sedmera, D. 2015. Morphometric Alterations, Steatosis, Fibrosisand Active Caspase-3 Detection in Carbamate Bendiokarb Treated Rabbit Liver. Environmental Toxicology, 30(2), 212-22.
  • [5] Bonsall, JL., Goose, J. 1986. The safety evaluation of Bendiokarb, a residual insecticide for vector control, Toxicology Letter, 33(1-3), 45-49.
  • [6] WHO-Pesticide residues in food-Evaluations, 1982, Report sponsored jointly by FAO and WHO, p: 57-75.
  • [7] Pazarbaşi, A., Kasap, M., Kasap, H. 1999. Çukurova’da Sivrisinek Mücadelesinde Kullanılan Bendiocarb’ın Memelilere (Sıçanlara) Dermal Etkisi. Turksh Journal of Zoology, 23, 303-308.
  • [8] Almasiova, V., Holovska, K., Tarabova, L., Cigankova, V., Lukacinova, V., Nistiar, F. 2012. Structural and ultrastructural study of the rabbit testes exposed to carbamate insecticide. Journal of Environmental Science Health, 47, 1319–1328.
  • [9] Dorko, F., Danko, J., Flesarova, S., Boros, E., Sobekova, A. 2011. Effect of pesticide Bendiokarbamate on distribution of acetylcholine- and butyrylcholine-positive nerves in rabbit’sthymus. European Journal of Histochemistry, 55, 206–209.
  • [10] Yılmaz, S., Unal, F., Yuzbasioglu, D., Celik, M. 2014. DNA damage in human lymphocytes exposed to four food additives in vitro. Toxicology and Industrial Health, 30, 926-37.
  • [11] Lowry, OH., Rosebrough, N. J., Farr, AL, 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 19, 265.
  • [12] Ohkawa, H., Ohishi, N., Yagi, K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Analytical Biochemistry, 95,351 - 358.
  • [13] Marklund, S., Marklund, G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47,469-474.
  • [14] Aebi, H. 1984. Catalase in vitro. Methods Enzymology, 105,121-126.
  • [15] Paglia, DE., Valentine, WN. 1987. Studies on the quantative and qualitative characterization of glutathione peroxidase. Journal of Laboratory Medicne, 70,158-165.
  • [16] Benzie, I.F., Strain, J.J. 1996. The Ferric Reducing Ability of Plasma (FRAP) As a Measure of Antioxidant Power Q The FRAP Assay, Analytical Biochemistry, 239, 70–76.
  • [17] Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. 1999. Antioxidant Activity Applying An Improved ABTS Radical Cation Decolorization Assay, Free Radical Biology and Medicine, 26, 1231–1237.
  • [18] Özkan, D., Yüzbaşıoğlu, D., Ünal, F., Yılmaz, S., Aksoy, H. 2009. Evaluation of the cytogenetic damage induced by the organophosphorous insecticide acephate. Cytotechnology, 59, 73-80.
  • [19] Dikshith, T.S.S, 2011. Handbook of Chemicals and Safety, CRC Press, Boca Raton, FL, USA.
  • [20] Ghorabaa, Z., Aibaghia, B., Soleymanpoura, A., 2018. Ultrasound-assisted dispersive liquid-liquid microextraction followed by ion mobility spectrometry for the simultaneous determination of Bendiokarb and azinphos-ethyl in water, soil, food and beverage samples. Ecotoxicology and Environmental Safety, 165, 459–466.
  • [21] Ames, B.N., Shıgenaga, M.K., Hagen, T.M., 1993. Oxidants, Antioxidants and the Degenerative Diseases of Aging, Proceedings of the National Academy of Sciences, 90, 7915-7922.
  • [22] Sobekova, A., Holovska, K., Lenartova, V. 2009. The another toxic effect of carbamate insecticides. Acta Biologica Hungarica,;60(1), 45–54.
  • [23] Sakr, S.A., Al-Amoudi, W.M., 2012. Effect of leave extract of Ocimum basilicum on deltamethrin induced nephrotoxicity and oxidative stress in albino rats. Journal of Applied Pharmaceutical Science, 2(5), 22-27.
  • [24] Shiau, S.Y., Huff, R.A., Wells, B.C, 1980. Mutagenicity and DNA-damaging activity for several pesticides tested with Bacillus subtilis mutants. Mutation Research, 71,169-179.
  • [25] Piperakis, S.M., Kontogianni, K., Siffel, C. 2006. Measuring the effects of pesticides on occupationally exposed humans with the comet assay. Environmental Toxicology, 21, 355-359.
  • [26] Kisby, GE., Muniz, JF., Scherer, J., Lasarev, MR., Koshy, M., Kow, YW., McCauley, L., 2009. Oxidative stress and DNA damage in agricultural workers. Journal of Agromedicine, 14(2),206-214.
  • [27] Castillo-Cadena, J., Tenorio-Vieyra, LE., Quintana-Carabia, AI., Garcia-Fabila, MM., Ramirez-San Juan, E., Madrigal-Bujaidar, E. 2006. Determination of DNA damage in floriculturists exposed to mixtures of pesticides. Journal of Biomedicine and Biotechnology,1-12.
  • [28] Yurdun, T., Turan, K., 2002. Pestisitlerin genotoksik etkilerinin araştırılması. M.Ü. Bilimsel Araştırma Projeleri Komisyon Başkanlığı. Proje No: SAĞ-061/131102.
  • [29] Ündeğer Ü, Başaran N. 2005. Effects of pesticides on human peripheral lymphocytes in vitro: induction of DNA damage. Archives of Toxicology,79,169-176.
  • [30] Rahman, MF., Mahboob, M., Danadevi, K., Banu, BS., Grover, P., 2002. Assessment of genotoxic effects of chlorpyriphos and acephate by the comet assay in mice leucocytes. Mutation Research, 516,139-147.
  • [31] Shadnia, A., Azizi, E., Hosseini, R., Khoei, S., Fouladdel, S., Pajoumand, A., Jalali, N., Abdollahi, M., 2005. Evaluation of oxidative stress and genotoxicity in organophosphorus insecticide formulations. Human & Experimental Toxicology, 24(9), 439-445.