Ralstonia eutropha H16 suşuyla sulu çözeltilerden kurşun ve bor biyogiderimi

Öz: Bu çalışmada, su ortamlarına en fazla karışan ve canlılar üzerinde önemli toksik etkileri bulunan kurşun (Pb) ile kullanımı giderek yaygınlaşan ve ülkemiz için oldukça büyük stratejik öneme sahip olan bor (B) elementinin sulardan gideriminde, geleneksel yöntemlere alternatif olarak daha ekonomik, kullanışlı ve etkin bir yöntem olan biyolojik arıtımın kullanılması amaçlanmıştır. Bu amaçla, Ralstonia eutropha H16 suşunun Pb ve B bağlama kapasitesi test edilmiştir. Minimum İnhibisyon Konsantrasyonları (MİK), Pb için 1365 ppm, B için 2500 ppm olarak belirlenmiştir. Pb ve B’un üç alt dozu (Pb için 5, 25, 50 ppm; B için 500, 1000, 1500 ppm) bakterilere 24 saat boyunca uygulanmış ve bu sürenin sonunda kültür ortamında, bakteriyel hücrelerin yüzeyinde ve içinde olmak üzere üç farklı ortamda biriken Pb ve B konsantrasyonları bir İndüktif Eşleşmiş Plazma Kütle Spektrometresi (ICP-MS) kullanılarak tayin edilmiştir. En fazla Pb biyogiderimi %88’lik bir oranla 5 ppm Pb uygulamasında, en fazla B giderimi ise %7’lik bir oranla 500 ppm B uygulamasında gözlenmiştir. Taramalı Elektron Mikroskobu (SEM) görüntüleri, Pb uygulanan hücrelerin yüzeyinin kontrole göre pürüzlü olduğunu ve önemli derecede çökelmeler olduğunu göstermiştir. Enerji Dağılımlı X-ışını Spektroskopisi (EDX) spektrumları ise Pb uygulanan hücrelerde Pb varlığını doğrulamıştır. Çalışmanın sonuçları, R. eutropha H16 suşunun sulardan Pb gideriminde önemli derecede etkili olduğunu ancak B gideriminde yeterli olmadığını göstermiştir.

___

  • [1] Doğan G., Pseudomonas cinsi bakterilerde hekzavalent krom indirgeme üzerine organik moleküllerin etkisi, Yüksek Lisans Tezi, Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Denizli, 2012.
  • [2] Pugazhendhi A., Boovaragamoorthy GM., Ranganathan K., Naushad M., Kaliannan T., New insight into effective biosorption of lead from aqueous solution using Ralstonia solanacearum: characterization and mechanism studies, Journal of Cleaner Production, 174, 1234-1239, 2018.
  • [3] Kalita D., Joshi SR., Study on bioremediation of lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat, Biotechnology Reports, 16, 48-57, 2017.
  • [4] Lombardi PE., Peri SI., Verrengia Guerrero NR., ALA-D and ALA-D reactivated as biomarkers of lead contamination in the fish Prochilodus lineatus, Ecotoxicology and Environmental Safety, 73 (7), 1704-1711, 2010.
  • [5] Shahid M., Pinelli E., Dumat C., Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands, Journal of Hazardous Materials, 219–220, 1-12, 2012.
  • [6] Rosen MB., Pokhrel LR., Weir MH., A discussion about public health, lead and Legionella pneumophila in drinking water supplies in the United States, Science of Total Environment, 590–591, 843-852, 2017.
  • [7] Çöl M., Çöl C., Environmental boron contamination in waters of Hisarcik area in the Kutahya province of Turkey, Food and Chemical Toxicology, 41(10), 1417-20, 2003.
  • [8] Türker OC., Yakar A., Gür N., Bioaccumulation and toxicity assessment of irrigation water contaminated with boron (B) using duckweed (Lemna gibba) in a batch reactor system, Journal of Hazardous Materials, 324, 151-159, 2017.
  • [9] Raja CE., Omine K., Arsenic, boron and salt resistant Bacillus safensis MS11 isolated from Mongolia desert soil, African Journal of Biotechnology, 11(9), 2267-2275, 2012.
  • [10] Howe PD., A review of boron effects in the environment. Biological Trace Element Research, 66(1), 153-166, 1998.
  • [11] Rowe RI., Eckhert CD., Boron is required for zebrafish embryogenesis, Journal of Experimental Biology, 202(12), 1649-1654, 1999.
  • [12] Roskill. The Economics of Boron, 9th edition, 1999.
  • [13] Hasenmueller EA., Criss RE., Multiple sources of boron in urban surface waters and groundwaters, Science of Total Environment, 447, 235-247, 2013.
  • [14] ETİ Maden. Boron in Turkey. https://www.etimaden.gov.tr/en/boron-in-turkey. Erişim tarihi: 11/04/2021.
  • [15] Su Kirliliği Kontrolü Yönetmeliği, Resmî Gazete tarih ve sayı: 31.12.2004-25687.
  • [16] İnsani Tüketim Amaçlı Sular Hakkında Yönetmelik, Resmî Gazete tarih ve sayı: 17.02.2005-25730.
  • [17] WHO, Guidelines for drinking-water quality World Health Organization, fourth, editör WHO, Geneva, 2017.
  • [18] Akinci G., Guven DE., Bioleaching of heavy metals contaminated sediment by pure and mixed cultures of Acidithiobacillus spp., Desalination, 268(1), 221-226, 2011.
  • [19] Akkoyun MB., Özdemir S., Kılınç E., Birhanli E., Aygün A., Sen F., Resistance, removal, and bioaccumulation of Ni (II) and Co (II) and their impacts on antioxidant enzymes of Anoxybacillus mongoliensis, Comparative Biochemistry and Physiology - Part C, 235, 108790, 2020.
  • [20] Geva P., Kahta R., Nakonechny F., Aronov S., Nisnevitch M., Increased copper bioremediation ability of new transgenic and adapted Saccharomyces cerevisiae strains, Environmental Science and Pollution Research, 23(19), 19613-19625, 2016.
  • [21] Wang J., Chen C., Biosorbents for heavy metals removal and their future, Biotechnology Advances, 27(2), 195-226, 2009.
  • [22] Vural A., Demir S., Boyno G., Biyoremediasyon ve fungusların biyoremediasyonda kullanılması, Yüzüncü Yıl Üniversitesi Tarım Bilim Dergisi, 28, 490-501, 2018.
  • [23] Verma S., Kuila A., Bioremediation of heavy metals by microbial process, Environmental Technology & Innovation, 14, 100369, 2019.
  • [24] Sharma B., Shukla P., Lead bioaccumulation mediated by Bacillus cereus BPS-9 from an industrial waste contaminated site encoding heavy metal resistant genes and their transporters, Journal of Hazardous Materials, 401 (June 2020), 2021.
  • [25] Das S., Dash HR., Chakraborty J., Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants, Applied Microbiology and Biotechnology, 100(7), 2967-2984, 2016.
  • [26] Vandamme P., Coenye T., Taxonomy of the genus Cupriavidus: a tale of lost and found, International Journal of Systematic and Evolutionary Microbiology, 54 (Pt6), 2285-2289, 2004.
  • [27] Chen W-M., Chang J-S., Wu C-H., Chang S-C., Characterization of phenol and trichloroethene degradation by the rhizobium Ralstonia taiwanensis, Microbiological Research, 155(8), 672-680, 2004.
  • [28] Pandey G., Jain RK., Bacterial chemotaxis toward environmental pollutants: role in bioremediation, Applied and Environmental Microbiology, 68(12), 5789-5795, 2002.
  • [29] Konstantinidis KT., Isaacs N., Fett J., Simpson S., Long DT., Marsh TL., Microbial diversity and resistance to copper in metal-contaminated lake sediment, Microbial Ecology, 5(2), 191-202, 2003.
  • [30] Manasi Rajesh V., Santhana Krishna Kumar A., Rajesh N., Biosorption of cadmium using a novel bacterium isolated from an electronic industry effluent, Chemical Engineering Journal, 235, 176-185, 2014.
  • [31] Aleem A., Isar J., Malik A., Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizospheric soil, Bioresource Technology, 86(1), 7-13, 2003.
  • [32] Yılmaz M T., Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains, Turkish Journal of Medical Sciences, 42(2), 1423-1429, 2012.
  • [33] Darcan C., Kahyaoğlu M., The effect of some boron derivatives on kanamycin resistance and survival of E. coli and P. aeruginosa in lake water, Biomedical and Environmental Sciences, 25(4), 476-482, 2012.
  • [34] Masoumi F., Khadivinia E., Alidoust L., Mansourinejad Z., Shahryari S., Safaei M., et al. Nickel and lead biosorption by Curtobacterium sp. FM01, an indigenous bacterium isolated from farmland soils of northeast Iran, Journal of Environmental Chemical Engineering, 4(1), 950-957, 2016.
  • [35] Ren G., Jin Y., Zhang C., Gu H., Qu J., Characteristics of Bacillus sp. PZ-1 and its biosorption to Pb(II). Ecotoxicology and Environmental Safety, 117, 141-148, 2015.
  • [36] Roane TM., Lead resistance in two bacterial ısolates from heavy metal–contaminated soils, Microbial Ecology, 37(3), 218-224, 1999.
  • [37] Puyen ZM., Villagrasa E., Maldonado J., Diestra E., Esteve I., Sole A., Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008, Bioresource Technology, 126, 233-237, 2012.
  • [38] Maldonado J., Diestra E., Huang L., Domenech A M., Villagrasa E., Puyen Z M., et al., Isolation and identification of a bacterium with high tolerance to lead and copper from a marine microbial mat in Spain, Annals of Microbiology, 60(1), 113-120, 2010.
  • [39] Lu W B., Shi J J., Wang C H., Chang J S., Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance, Journal of Hazardous Materials, 134, 80-86, 2006.
  • [40] Raja C E., Anbazhagan K., Selvam G S., Isolation and characterization of a metal-resistant Pseudomonas aeruginosa strain, World Journal of Microbiology and Biotechnology, 22, 577-585, 2006.
  • [41] Nable RO., Banuelos GS., Paull JG., Boron toxicity, Plant Soil, 193(1), 181–198, 1997. metal resistant genes and their transporters, Journal of Hazardous Materials, 401 (June 2020), 123285, 2021.
  • [42] Miwa, H., Fujiwara T., Isolation and identification of boron-accumulating bacteria from contaminated soils and active sludge, Soil Science and Plant Nutrition, 55, 643-646, 2009.
  • [43] Raja C E., Omine K., Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation, Environmental Geochemistry and Health, 35, 431-438, 2013.
  • [44] Laçin B, Ertit Taştan B, Dönmez G. Detection of boron removal capacities of different microorganisms in wastewater and effective removal process, Water Science and Technology, 72(10), 1832-1839, 2015.
  • [45] Li X., Li D., Yan Z., Ao Y., Biosorption and bioaccumulation characteristics of cadmium by plant growth-promoting rhizobacteria, RSC Advances, 8(54), 30902-30911, 2018.
  • [46] Sagar S, Bajaj S, Gola D, Malik A, P J Khankhane R K, Singh. D K. A qualitative approach to nickel and lead uptake by heavy metal resistant bacteria Klebsiella sp.10KN, International Journal of Applied Research, 3(7), 878-885, 2017.
  • [47] Su Y J., Lin J Q., Lin J Q., Hao D H., Bioaccumulation of Arsenic in recombinant Escherichia coli expressing human metallothionein, Biotechnology and Bioprocess Engineering, 14(5), 565-570, 2009.