İleri Ozmoz ile Arıtılmış Evsel Atıksudan Fosfat Geri Kazanımının Değerlendirilmesi

Küresel nüfus hızla artmaya devam ederken, gıda arzının güvenliğini sağlamak için gübre giderek daha önemli hale gelmektedir. Fosfat (PO4-3), gübrelerdeki ana bileşen olduğundan, alternatif PO4-3 kaynaklarına yönelik arz artmaktadır. İleri ozmoz (FO) prosesi, nütrient konsantrasyonu ve geri kazanımı için umut verici, düşük maliyetli ve düşük tıkanmaya neden olan bir membran prosesi olarak son zamanlarda daha fazla dikkat çekmektedir. Bu çalışmada, ön arıtımı yapılmış evsel atıksulardan PO4-3 geri kazanımında FO prosesinin etkinliği değerlendirilmiştir. FO prosesinin etkinliği, iki farklı konsantrasyonda (1 ve 2 M) iki farklı çekme çözeltisi (MgCl2 ve NaOAc) ve iki farklı geri kazanım oranı (%60 ve %80) kullanılarak araştırılmıştır. FO deneylerinde en yüksek PO4-3 konsantrasyonu, 23,20 mg/L ile %60 geri kazanım oranında ve 2 M MgCl2 çekme çözeltisi konsantrasyonu ile elde edilmiştir.

Evaluation of Phosphate Recovery from Treated Municipal Wastewater by Forward Osmosis

As the global population continues to grow rapidly, fertilizers are becoming increasingly crucial for ensuring the security of food supply. Because phosphate is the key component in fertilizers, there is an increasing demand for alternative phosphate (PO43-) sources. The forward osmosis (FO) process has gained more attention recently as a promising, low-cost and low-fouling membrane process for nutrient concentration and recovery. In this study, the efficiency of the FO process was evaluated in recovering PO43- from pre-treated municipal wastewater. The effectiveness of the FO process was investigated using two different draw solutions (MgCl2 and NaOAc) at two different concentrations (1 and 2 M) and two different recovery rates (60% and 80%). The highest PO43- concentration of 23.20 mg/L was obtained in FO experiments at 60% recovery rate and with the concentration of the 2 M MgCl2 draw solution.

___

  • Zeeman, G., et al. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water). 2008. Water science and technology : a journal of the International Association on Water Pollution Research. 578 1207-1212.
  • Sun, D., et al. Energy-neutral sustainable nutrient recovery incorporated with the wastewater purification process in an enlarged microbial nutrient recovery cell. 2018. Journal of Power Sources. 384 160-164.
  • Lee, Y., et al. Towards Energy Self-Sufficient Water Reclamation Plants. 2013. PUB Technology Review, London.
  • Elser, J. and Bennett, E. A broken biogeochemical cycle. 2011. Nature. 4787367 29-31.
  • Xie, M., Nghiem, L. D., Price, W. E., and Elimelech, M. 2014. Toward resource recovery from wastewater: extraction of phosphorus from digested sludge using a hybrid forward osmosis–membrane distillation process. Environmental Science & Technology Letters. 12 191-195.
  • Jørgensen, M. K., Sørensen, J. H., Quist-Jensen, C. A., and Christensen, M. L. 2018. Wastewater treatment and concentration of phosphorus with the hybrid osmotic microfiltration bioreactor. Journal of Membrane Science. 559 107-116.
  • Reijnders, L. 2014. Phosphorus resources, their depletion and conservation, a review. Resources, conservation and recycling. 93 32-49.
  • Vardanyan, A., Kafa, N., Konstantinidis, V., Shin, S. G., and Vyrides, I. 2018. Phosphorus dissolution from dewatered anaerobic sludge: Effect of pHs, microorganisms, and sequential extraction. Bioresource technology. 249 464-472.
  • Singh, N., et al. 2019. Dewatering of sewage for nutrients and water recovery by Forward Osmosis (FO) using divalent draw solution. Journal of Water Process Engineering. 31 100853.
  • Ali, A., Quist-Jensen, C. A., Macedonio, F., and Drioli, E. 2015. Application of membrane crystallization for minerals’ recovery from produced water. Membranes. 54 772-792.
  • Quist-Jensen, C. A., Macedonio, F., and Drioli, E. 2016. Membrane crystallization for salts recovery from brine—an experimental and theoretical analysis. Desalination and Water Treatment. 5716 7593-7603.
  • Qiu, G., Law, Y.-M., Das, S., and Ting, Y.-P. 2015. Direct and complete phosphorus recovery from municipal wastewater using a hybrid microfiltration-forward osmosis membrane bioreactor process with seawater brine as draw solution. Environmental science & technology. 4910 6156-6163.
  • Arola, K., Van der Bruggen, B., Mänttäri, M., and Kallioinen, M. 2019. Treatment options for nanofiltration and reverse osmosis concentrates from municipal wastewater treatment: A review. Critical Reviews in Environmental Science and Technology. 4922 2049-2116.
  • Díez, B. and Rosal, R. A 2020. critical review of membrane modification techniques for fouling and biofouling control in pressure-driven membrane processes. Nanotechnology for Environmental Engineering. 52 1-21.
  • Jafarinejad, S. 2021. Forward osmosis membrane technology for nutrient removal/recovery from wastewater: Recent advances, proposed designs, and future directions. Chemosphere. 263 128116. 136 Evaluation of Phosphate Recovery from Treated Municipal Wastewater by Forward Osmosis
  • Shaffer, D. L., Werber, J. R., Jaramillo, H., Lin, S., and Elimelech, M. Forward osmosis: Where are we now? 2015. Desalination. 356 271-284.
  • Rastogi, N. K. 2020. Forward osmosis: Principles, applications, and recent developments. Current Trends and Future Developments on (Bio-) Membranes. 3-35.
  • Chiao, Y.-H., et al. 2022. Comparison of Fouling Behavior in Cellulose Triacetate Membranes Applied in Forward and Reverse Osmosis Industrial & Engineering Chemistry Research. 6141 15345-15354.
  • Yadav, S., et al. 2020. Organic fouling in forward osmosis: a comprehensive review. Water. 125 1505.
  • Almoalimi, K. and Liu, Y.-Q. 2022. Fouling and cleaning of thin film composite forward osmosis membrane treating municipal wastewater for resource recovery. Chemosphere. 288 132507.
  • Ansari, A. J., Hai, F. I., Price, W. E., Drewes, J. E., and Nghiem, L. D. 2017. Forward osmosis as a platform for resource recovery from municipal wastewater - A critical assessment of the literature. Journal of Membrane Science. 529 195-206.
  • Pramanik, B. K., Hai, F. I., Ansari, A. J., and Roddick, F. A. 2019. Mining phosphorus from anaerobically treated dairy manure by forward osmosis membrane. Journal of Industrial and Engineering Chemistry. 78 425-432.
  • Singh, N., Petrinic, I., Hélix-Nielsen, C., Basu, S., and Balakrishnan, M. 2019. Influence of Forward Osmosis (FO) membrane properties on dewatering of molasses distillery wastewater. Journal of Water Process Engineering. 32 100921.
  • Carlsson, H., Aspegren, H., Lee, N., and Hilmer, A. 1997. Calcium phosphate precipitation in biological phosphorus removal systems. Water Research. 315 1047-1055.
  • Song, Y., Hahn, H. H., and Hoffmann, E. 2002. Effects of solution conditions on the precipitation of phosphate for recovery: A thermodynamic evaluation. Chemosphere. 4810 1029-1034.
  • Ansari, A. J., Hai, F. I., Price, W. E., and Nghiem, L. D. 2016. Phosphorus recovery from digested sludge centrate using seawater-driven forward osmosis. Separation and Purification Technology. 163 1-7.
Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi-Cover
  • ISSN: 1012-2354
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1985
  • Yayıncı: Erciyes Üniversitesi