Yeşil Üretim için Çevresel Etki Temelli Termoplastik Malzeme Seçimi: Karşılaştırmalı Bir Hibrid ÇKKV Yaklaşımı

Öz: Yeşil üretim için çevreci termoplastik malzeme seçimi imalat sektörü için çeşitli cihazların tasarlanmasında ve üretilmesinde hayati bir rol oynar. Kabul edilebilir bir polimerik malzeme seçme kararı çeşitli değerlendirme kriterleri gerektirir çünkü günümüzde her biri kendi özelliklerine, uygulamalarına, faydalarına ve dezavantajlarına sahip çok sayıda alternatif malzeme mevcuttur. Bu çalışmada, yeşil üretim için çevresel etki temelli uygun termoplastik malzemelerin seçimi için karşılaştırmalı bir hibrit çok kriterli karar verme (ÇKKV) yaklaşımı önerilmektedir. Karar modeli üç ana başlık altında dokuz değerlendirme kriteri ve altı alternatif malzemeden oluşmaktadır. Bu amaçla, malzeme seçim problemlerini çözmek için üç farklı hibrit ÇKKV yöntemi uygulanmıştır (AHP-CoCoSo, AHP-COPRAS ve AHP-WASPAS). Elde edilen sonuçlara göre PP, PVC ve de ABS umut verici özellikler göstermiştir. Ayrıca Spearman'ın sıralama korelasyon analizi yapılmış ve kullanılan hibrit yöntemler birbirleriyle tutarlı sıralamalar üretmiştir. Sonuç olarak, PP'nin yeşil üretim için çevresel etki temelli en uygun termoplastik olduğu sonucuna varılmıştır. Ayrıca, PVC ve ABS’nin de PP'den sonra önerilebilecek en iyi alternatifler arasında yer aldığı sonucuna varılmıştır. Çalışma, malzeme seçeneklerini sıralamak ve seçim prosedürünü geliştirmek için ÇKKV tekniklerinin kullanımını desteklemektedir. Araştırma, polimerik malzemelerin yeşil üretim süreçleri için seçim mekanizmasına dahil olan endüstriyel yöneticilere ve akademisyenlere büyük ölçüde yardımcı olacaktır.

Environmental Impact-Based Thermoplastic Material Selection for Green Manufacturing: A Comparative Hybrid MCDM Approach

The choice of environmentally friendly thermoplastic materials for green manufacturing plays a vital role in the design and manufacture of various devices for the manufacturing sector. The decision to select an acceptable polymeric material requires a variety of evaluation criteria because there are many alternative materials available today, each with its own characteristics, applications, benefits and drawbacks. In this study, a comparative hybrid multi-criteria decision making (MCDM) approach is proposed for the selection of suitable thermoplastic materials for green manufacturing based on environmental impact. The decision model consists of six alternative materials and nine evaluation criteria under three main categories. For this purpose, three different hybrid MCDM methods are applied to solve material selection problems (i.e., AHP-CoCoSo, AHP-COPRAS and AHP-WASPAS). According to the results obtained, PP, PVC and ABS showed the promising properties. In addition, Spearman's rank correlation analysis is performed, and the hybrid methods used produce consistent rankings with each other. As a result, it is concluded that PP is the most suitable thermoplastic for green manufacturing based on environmental impact. In addition, it is concluded that PVC and ABS are among the best alternatives to be recommended after PP. The study supports the use of MCDM techniques to rank material options and improve the selection procedure. The research will greatly assist industrial managers and academics involved in the selection mechanism for green manufacturing processes of polymeric materials.

___

  • Dornfeld, D. A. (Ed.). 2012. Green manufacturing: fundamentals and applications. Springer Science & Business Media.
  • Sezen, B., Cankaya, S. Y. 2013. Effects of green manufacturing and eco-innovation on sustainability performance. Procedia-Social and Behavioral Sciences, 99, 154-163.
  • Rusinko, C. 2007. Green manufacturing: an evaluation of environmentally sustainable manufacturing practices and their impact on competitive outcomes. IEEE transactions on engineering management, 54(3), 445-454.
  • Emovon, I., Oghenenyerovwho, O. S. 2020. Application of MCDM Method in Material Selection for Optimal Design: A Review. Results in Materials, 7, 100115.
  • Biron, M. 2018. Thermoplastics and Thermoplastic Composites. 3rd edition. William Andrew, 1143s.
  • Larson, E. R. 2015. Introduction. ss 1-18. Thermoplastic Material Selection, Elsevier Science & Technology Books, USA, 364s.
  • Grigore, M. E. . 2017. Methods of Recycling, Properties and Applications of Recycled Thermoplastic Polymers. Recycling, 2(4), 24.
  • Larson, E. R. 2015. Why Use Plastic?. ss 19–56. Thermoplastic Material Selection, Elsevier Science & Technology Books, USA, 364s.
  • Zhang, H., Peng, Y., Tian, G., Wang, D., Xie, P. 2017. Green Material Selection for Sustainability: A Hybrid MCDM Approach. PLoS One, 12(5), e0177578.
  • Remadi, F. D., Frikha, H. M. 2020. The Triangular Intuitionistic Fuzzy Extension of the CODAS Method for Solving Multi-Criteria Group Decision Making. 2020 International Multi-Conference on: Organization of Knowledge and Advanced Technologies, 6-8 February, Tunusia.
  • Akadiri, P. O., Olomolaiye, P. O., Chinyio, E. A. 2013. Multi-Criteria Evaluation Model for the Selection of Sustainable Materials for Building Projects. Automation in Construction, 30, 113-125.
  • Govindan, K., Madan Shankar, K., Kannan, D. 2016. Sustainable Material Selection for Construction Industry - A Hybrid Multi Criteria Decision Making Approach. Renewable and Sustainable Energy Reviews, 55, 1274- 1288.
  • Khoshnava, S. M., Rostami, R., Valipour, A., Ismail, M., Rahmat, A. R. 2018. Rank of Green Building Material Criteria Based on the Three Pillars of Sustainability Using the Hybrid Multi Criteria Decision Making Method. Journal of Cleaner Production, 173, 82-99. Yeşil Üretim için Çevresel Etki Temelli Termoplastik Malzeme Seçimi: Karşılaştırmalı Bir Hibrid ÇKKV Yaklaşımı 114
  • Ghorabaee, M. K., Amiri, M., Zavadskas, E. K., Hooshmand, R., Antuchevičienė, J. 2017. Fuzzy Extension of the CODAS Method for Multi-Criteria Market Segment Evaluation. Journal of Business Economics and Management, 18(1), 1-19.
  • Mon, D. L., Cheng, C. H., Lin, J. C. 1994. Evaluating Weapon System Using Fuzzy Analytic Hierarchy Process Based on Entropy Weight. Fuzzy Sets and Systems, 62(2), 127-134.
  • Höfer, T., Sunak, Y., Siddique, H., Madlener, R. 2016. Wind Farm Siting Using a Spatial Analytic Hierarchy Process Approach: A Case Study of the Städteregion Aachen. Applied Energy, 163, 222-243.
  • Yang, K., Zhu, N., Chang, C., Wang, D., Yang, S., Ma, S. 2018. A Methodological Concept for Phase Change Material Selection Based on Multi-Criteria Decision Making (MCDM): A Case Study. Energy, 165, 1085-1096.
  • Thokala, P., Devlin, N., Marsh, K., Baltussen, R., Boysen, M., Kalo, Z., Longrenn, T., Mussen, F. Peacock, S., PharmD, J. W., Ijzerman, M. 2016. Multiple Criteria Decision Analysis for Health Care Decision Making - An Introduction: Report 1 of the ISPOR MCDA Emerging Good Practices Task Force. Value in Health, 19(1), 1-13.
  • Xu, H., Romagnoli, A., Sze, J. Y., Py, X. 2017. Application of Material Assessment Methodology in Latent Heat Thermal Energy Storage for Waste Heat Recovery. Applied Energy, 187, 281-290.
  • Saaty, T. L. 2008. Decision Making with the Analytic Hierarchy Process. International Journal of Services Sciences, 1, 83-98.
  • Sánchez-Lozano, J. M., García-Cascales, M. S., Lamata, M. T. 2016. GIS-Based Onshore Wind Farm Site Selection Using Fuzzy Multi-Criteria Decision Making Methods. Evaluating the Case of Southeastern Spain. Applied Energy, 171, 86-102.
  • Riabacke, M., Danielson, M., Ekenberg, L. 2012. State-of-the-Art Prescriptive Criteria Weight Elicitation. Advances in Decision Sciences, 2012, 276584.
  • Ecer, F., Pamucar, D. 2020. Sustainable Supplier Selection: A Novel Integrated Fuzzy Best Worst Method (FBWM) and Fuzzy CoCoSo with Bonferroni (CoCoSo’B) Multi-Criteria Model. Journal of Cleaner Production, 266, 121981.
  • Yazdani, M., Wen, Z., Liao, H., Banaitis, A., Turskis, Z. 2019. A Grey Combined Compromise Solution (CoCoSoG) Method for Supplier Selection in Construction Management. Journal of Civil Engineering and Management, 25(8), 858–874.
  • Yazdani, M., Zarate, P., Kazimieras Zavadskas, E., Turskis, Z. 2019. A Combined Compromise Solution (CoCoSo) Method for Multi-Criteria Decision-Making Problems. Management Decision, 57(9), 2501-2519.
  • Zelany, M. 1974. A Concept of Compromise Solutions and the Method of the Displaced Ideal. Computers & Operations Research, 1(3–4), 479-496.
  • Xu, Z. 2012. Intuitionistic Fuzzy Multiattribute Decision Making: An Interactive Method. IEEE Transactions on Fuzzy Systems, 20(3), 514-525.
  • Asgharnia, A., Schwartz, H., Atia, M. 2023. Multi-Objective Fuzzy Q-Learning to Solve Continuous State-Action Problems. Neurocomputing, 516, 115-132.
  • Alinezhad, A., Khalili, J. 2019. New methods and applications in multiple attribute decision making (MADM). ss 87-98. Springer Nature, Switzerland, 233s.
  • Keshavarz Ghorabaee, M., Amiri, M., Salehi Sadaghiani, J., Hassani Goodarzi, G. 2014. Multiple Criteria Group Decision-Making for Supplier Selection Based on COPRAS Method with Interval Type-2 Fuzzy Sets. International Journal of Advanced Manufacturing Technology, 75(5–8), 1115–1130.
  • Kazimieras Zavadskas, E., Kaklauskas, A., Peldschus, F., Turskis, Z. 2007. Multi-Attribute Assessment of Road Design Solutions by Using the Copras Method. The Baltic Journal of Road and Bridge Engineering, 2(4), 195- 203.
  • Chauvy, R., Lepore, R., Fortemps, P., De Weireld, G. 2020. Comparison of Multi-Criteria Decision-Analysis Methods for Selecting Carbon Dioxide Utilization Products. Sustainable Production and Consumption, 24, 194-210.
  • Keshavarz Ghorabaee, M., Zavadskas, E. K., Amiri, M., Esmaeili, A. 2016. Multi-Criteria Evaluation of Green Suppliers Using an Extended WASPAS Method with Interval Type-2 Fuzzy Sets. Journal of Cleaner Production, 137, 213-229.
  • Chakraborty, S., Zavadskas, E. K. 2014. Applications of WASPAS Method in Manufacturing Decision Making. Informatica, 25(1), 1-20. Yeşil Üretim için Çevresel Etki Temelli Termoplastik Malzeme Seçimi: Karşılaştırmalı Bir Hibrid ÇKKV Yaklaşımı 115
  • Peterson, A. M. 2019. Review of Acrylonitrile Butadiene Styrene in Fused Filament Fabrication: A Plastics Engineering-Focused Perspective. Additive Manufacturing, 27, 363-371.
  • Larson, E. R. 2015. An Overview of Thermoplastic Materials. ss 97-143. Thermoplastic Material Selection. Elsevier Science & Technology Books, USA, 364s.
  • Ogończyk, D., Wgrzyn, J., Jankowski, P., Da̧ browski, B., Garstecki, P. 2010. Bonding of Microfluidic Devices Fabricated in Polycarbonate. Lab on a Chip, 10, 1324-1327.
  • Liga, A., Morton, J. A. S., Kersaudy-Kerhoas, M. 2016. Safe and Cost-Effective Rapid-Prototyping of Multilayer PMMA Microfluidic Devices. Microfluidics and Nanofluidics, 20(12), 164.
  • Der, O., Marengo, M., Bertola, V. 2019. Thermal Performance of Pulsating Heat Stripes Built with Plastic Materials. Journal of Heat Transfer, 141(9), 091808.
  • Hamedi, M. M., Ünal, B., Kerr, E., Glavan, A. C., Fernandez-Abedul, M. T., Whitesides, G. M. 2016. Coated and Uncoated Cellophane as Materials for Microplates and Open-Channel Microfluidics Devices. Lab on a Chip, 16, 3885-3897.
  • Rowe, D. J., Porch, A., Barrow, D. A., Allender, C. J. 2012. Microfluidic Device for Compositional Analysis of Solvent Systems at Microwave Frequencies. Sensors and Actuators B: Chemical, 169, 213-221.
  • Tarannum F., Muthaiah, R., Annam, R. S., Gu, T., Garg, J. 2020. Effect of Alignment on Enhancement of Thermal Conductivity of Polyethylene–Graphene Nanocomposites and Comparison with Effective Medium Theory. Nanomaterials, 10(7), 1291.
  • Chae, H. G., Kumar, S. 2008. Making Strong Fibers. Science, 319(5865), 908-909.
  • Kalpakajian, S. 2001. Manufacturing Engineering and Technology. Journal of Emerging Technologies in Engineering Research, 3(2).
  • Rodrigues, R. O., Lima, R., Gomes, H. T., Silva, A. M. T. 2015. Polymer Microfluidic Devices: An Overview of Fabrication Methods. U.Porto Journal of Engineering, 1(1), 67-79.
  • Callister, W. D. 1991. Materials Science and Engineering: An Introduction, 2nd edition, John Wiley & Sons, New York, 871s.
  • Gupta, D., Gaur, S. K. 2019. Carbon and Biofuel Footprinting of Global Production of Biofuels. Verma, D., Fortunati, E., Jain, S., Zhang, X, ed. 2019. Biomass, Biopolymer-Based Materials, and Bioenergy: Construction, Biomedical, and Other Industrial Applications, Woodhead Publishing, UK, 558s.
  • Plassmann, K., Edwards-Jones, G. 2010. Carbon Footprinting and Carbon Labelling of Food Products. ss 272- 296. Sonesson, U., Berlin, J., Ziegler, F., ed. 2010. Environmental Assessment and Management in the Food Industry, Woodhead Publishing, UK, 432s.
  • Buonomano, A., Barone, G., Forzano, C. 2022. Advanced Energy Technologies, Methods, and Policies to Support the Sustainable Development of Energy, Water and Environment Systems. Energy Reports, 8, 4844- 4853.
  • Maine, E., Ashby, M. F. 1994. Materials Selection in Mechanical Design. ss 5230-5236. Jürgen Buschow, K. H., Flemings, M. C., Kramer, E. J., Veyssière, P., Cahn, R. W., Ilschner, B., Mahajan, S., ed. 1994. Encyclopedia of Materials: Science and Technology, Pergamon.
  • Arora, N. K., Mishra, I. 2022. Progress of Sustainable Development Goal 7: Clean and Green Energy for All as the Biggest Challenge to Combat Climate Crisis. Environmental Sustainability, 5(4), 395-399.
  • Desole, M. P., Aversa, C., Barletta, M., Gisario, A., Vosooghnia, A. 2022. Life Cycle Assessment (LCA) of PET and PLA Bottles for the Packaging of Fresh Pasteurised Milk: The Role of the Manufacturing Process and the Disposal Scenario. Packaging Technology and Science, 35(2), 135-152.
  • Bontempi, E. 2017. A New Approach for Evaluating the Sustainability of Raw Materials Substitution Based on Embodied Energy and the CO2 Footprint. Journal of Cleaner Production, 162, 162-169.
  • Gürgen, S., Çakır, F. H., Sofuoğlu, M. A., Orak, S., Kuşhan, M. C., Li, H. 2019. Multi-Criteria Decision-Making Analysis of Different Non-Traditional Machining Operations of Ti6Al4V. Soft Computing, 23, 5259–5272.
  • Kalita, K., Madhu, S., Ramachandran, M., Chakraborty, S., Ghadai, R. K. 2023. Experimental Investigation and Parametric Optimization of a Milling Process Using Multi-Criteria Decision Making Methods: A Comparative Analysis. International Journal on Interactive Design and Manufacturing, 17(1), 453-467.