İdrar Taşlarının Kimyasal Bileşiminin Kontrastsız Helikal Bilgisayarlı Tomografi ile In Vivo Değerlendirilmesi

Amaç: Düşük doz helikal bilgisayarlı tomografi kullanılarak böbrek taşlarının yoğunluğunun ve kimyasal yapısının belirlenmesi. Gereç ve Yöntemler: Çalışmamıza; böbrek taşı nedeniyle ekstrakorporeal şok dalga litotripsisi (ESWL) yapılacak veya üriner sistem taş cerrahisi geçirmesi planlanan, böbrek veya üreter taşı olan 79 hasta dahil edildi. Tüm taş yoğunlukları, Hounsfield Ünite olarak düşük doz abdominal kontrastsız helikal bilgisayarlı tomografi incelemesi ile ölçüldü. Bilgisayarlı tomografi incelemesi için 4 dedektörlü Marconi MX 8000 sistemi kullanıldı. Tüm taşların analizlerinde X-Ray difraktometri kullanıldı. Bulgular: Taş tipi 52 hastada tek tip ve 27 hastada mikst taş olarak bulundu. Karışık taşlar içinde en büyük grubu, 17 hasta ile kalsiyum oksalat monohidrat-dihidrat taşları oluşturdu. Ürik asit taşları en düşük, kalsiyum oksalat monohidrat taşları en yüksek yoğunluğa sahip olarak bulundu. Ürik asit ve sistin taşlarının dansite değerleri ile diğer taş çeşitleri arasındaki fark istatistiksel olarak anlamlıydı. Sonuç: Teşhiste kullanılan kontrastsız helikal bilgisayarlı tomografi, taş kompozisyonunun in vivo tayininde de kullanılabilir. Uygun terapötik alternatifler sağlamak için görüntüleme çalışmaları ile taş kompozisyonlarını tanımlamak çok yardımcı olabilir.

In Vivo Evaluation of The Chemical Composition of Urinary Stones Using Non-Contrast Helical Computerized Tomography

Objective: To determine the density and chemical structure of renal stones by using in vivo low dose helical computerized tomography (CT). Material and Methods: 79 patients with urinary stones such as renal or uretheral stones were included in our study who were going to have extracorporeal shock wave lithotripsy (ESWL) or planned to go through urinary stone surgery due to renal stones. All stone densities were measured in Hounsfield Unit by low dose abdominal non-contrast helical computed tomography examination. Marconi MX 8000 CT system with 4 detectors was used for the CT examination. X-Ray diffractometry was used in the analyses of all stones. Results: The stone type was found to be pure type in 52 patients, and mixed stone in 27 patients. The largest group among the mixed stones included whewellite stone with 17 patients. Uric acid stones had the smallest, whewellite stones had the highest density. The difference between the density values of uric acid and cystine stones and the other stone types were statistically significant. Conclusion: Non-contrast helical computed tomography used in the diagnosis can also be used in the in vivo determination of the stone composition. It can be very helpful to define stone compositions by imaging studies to provide suitable therapeutic alternatives.

___

  • 1. Romero V, Akpinar H, Assimos DG (2010); Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol Spring-Summer 12 (2-3) e86–e962.
  • 2. Matlaga BR, Kawamoto S, Fishman E (2008), Dual Source Computed Tomography: A Novel Technique to Determine Stone Composition, Urology 72(5):1164-8., https://doi.org/10.1016/j.urology.2008.03.051
  • 3. Hassani H, Raynal G, Spie R, Daudon M, Vallée JN (2012) Imaging-based assessment of the mineral composition of urinary stones: an in vitro study of the combination of hounsfield unit measurement in noncontrast helical computerized tomography and the twinkling artifact in color Doppler ultrasound. Ultrasound Med Biol 38(5):803-10., https://doi.org/10.1016/j.ultrasmedbio.2012.01.009
  • 4. Marchini GS et.al. (2013); Stone characteristics on noncontrast computed tomography: establishing definitive patterns to discriminate calcium and uric acid compositions. Urology 82(3):539-46., https://doi.org/10.1016/j.urology.2013.03.092
  • 5. Ito H et.al. (2012); Predictive value of attenuation coefficients measured as Hounsfield units on noncontrast computed tomography during flexible ureteroscopy with holmium laser lithotripsy: a single-center experience. J Endourol 26(9):1125-30., https://doi.org/10.1089/end.2012.0154
  • 6. Perks AE, Gotto G, Teichman JM (2007); Shock wave lithotripsy correlates with stone density on preoperative computerized tomography. J Urol 178(3Pt1):912-5., https://doi.org/10.1016/j.juro.2007.05.043
  • 7. Deveci S, Coşkun M, Tekin MI, Peşkircioglu L, Tarhan NC, Ozkardeş H (2004); Spiral computed tomography: role in determination of chemical compositions of pure and mixed urinary stones--an in vitro study. Urology 64(2):237-40., https://doi.org/10.1016/j.urology.2004.03.029
  • 8. Smith RC et.al. (1995); Acute flank pain: comparison of non-contrast-enhanced CT and intravenous urography. Radiology 194(3):789-94., https://doi.org/10.1148/radiology.194.3.7862980
  • 9. Manglaviti G et.al. (2011); In vivo evaluation of the chemical composition of urinary stones using dual-energy CT. AJR Am J Roentgenol 197(1): W76-83., https://doi.org/10.2214/AJR.10.5217
  • 10. Demirel A, Suma S (2003); The efficacy of non-contrast helical computed tomography in the prediction of urinary stone composition in vivo. J Int Med Res 31(1):1-5., https://doi.org/10.1177/147323000303100101
  • 11. El-Assmy A, Abou-el-Ghar ME, el-Nahas AR, Refaie HF, Sheir KZ (2011); Multidetector computed tomography: role in determination of urinary stones composition and disintegration with extracorporeal shock wave lithotripsy--an in vitro study. Urology 77(2):286-90., https://doi.org/10.1016/j.urology.2010.05.021
  • 12. Hidas G et.al. (2010); Determination of renal stone composition with dual-energy CT: in vivo analysis and comparison with x-ray diffraction. Radiology 257(2):394-401., https://doi.org/10.1148/radiol.10100249
  • 13. Wisenbaugh ES, Paden RG, Silva AC, Humphreys MR (2014); Dual-energy vs conventional computed tomography in determining stone composition. Urology Jun;83(6):1243-7., https://doi.org/10.1016/j.urology.2013.12.023
  • 14. Hasan Erdogan, MD., Osman Temizoz, MD., Mustafa Koplay, MD., and Bahadir Ozturk, MD.; In Vivo Analysis of Urinary Stones With Dual-Energy Computed Tomography, J Comput Assist Tomogr 2019;43: 214–219, https://doi.org/10.1097/RCT.0000000000000831
  • 15. Mostafavi MR, Ernst RD, Saltzman B (1998); Accurate determination of chemical composition of urinary calculiby spiral computerized tomography. J Urol. 159:673-675.
  • 16. Saw KC et.al. (2000); Calcium stone fragility is predicted by helical CT attenuation values. J Endourol. 14(6):471-4., https://doi.org/10.1089/end.2000.14.471
  • 17. Bellin MF et.al. (2004); Helical CT evaluation of the chemical composition of urinary tract calculi with a discriminant analysis of CT-attenuation values and density. Eur Radiol. 14(11):2134-40., https://doi.org/10.1007/s00330-004-2365-6
  • 18. Grosjean R et.al. (2013); Pitfalls in urinary stone identification using CT attenuation values: are we getting the same information on different scanner models? Eur J Radiol 82(8):1201-6., https://doi.org/10.1016/j.ejrad.2013.02.020
  • 19. Williams JC Jr, Saw KC, Monga AG, Chua GT, Lingeman JE, McAteer JA (2001) Correction of helical CT attenuation values with wide beam collimation: in vitro test with urinary calculi. Acad Radiol 8(6):478-83., https://doi.org/10.1016/S1076-6332(03)80619-0
  • 20. Motley G, Dalrymple N, Keesling C, Fischer J, Harmon W (2001); Hounsfield unit density in the determination of urinary stone composition. Urology 58(2):170-3., https://doi.org/10.1016/S0090-4295(01)01115-3
  • 21. Stewart G et.al. (2015); Stone size limits the use of hounsfield units prediction of calcium oxalate stone composition. Urology 85(2):292-4., https://doi.org/10.1016/j.urology.2014.10.006