Bir Otonom Sualtı Aracı Manipülatör Sisteminin Yörünge Takip Kontrolü

Trajectory Tracking Control of an Autonomous Underwater Vehicle Manipulator System

ÖzetBu makalede, otonom bir sualtı aracı manipülatör (SAM) sistemi; hidrostatik kuvvetler, eklenmiş kütle, dinamik kaldırma, sürüklenme ve yanal kuvvetlerin oluşturduğu hidrodinamik kuvvetler dikkate alınarak modellenmiştir. Hidrodinamik kuvvetler hesaplanırken uzuvların birbiri üzerindeki gölgeleme etkileri de dikkate alınmıştır. Sistem hareket denklemleri, sualtı aracının eyletici dinamiği de dahil edilerek Newton-Euler formülasyonu kullanımıyla türetilmiş ve sistemin uç işlemcisinin yörünge takibi için ters dinamik kontrol yöntemi geliştirilmiştir. Benzetim sonuçları kontrol yönteminin etkin olduğunu göstermiştir. Anahtar Kelimeler: Sualtı Aracı Manipülatör (SAM) sistemi, modelleme, yörünge takip kontrolü.  AbstractIn this paper, an autonomous underwater vehicle manipulator system (UVMS) is modeled considering hydrostatic forces and hydrodynamic effects such as added mass, lift, drag and side forces. The shadowing effects of the links on each other are also taken into account when computing the hydrodynamic forces. The system equations of motion are then derived using Newton-Euler formulation including the thruster dynamics.  Next, an inverse dynamics control algorithm is applied for the end-effector trajectory tracking of the UVMS. Simulation results illustrate the effectiveness of the control method. Keywords: Underwater vehicle manipulator system (UVMS), modeling, trajectory tracking control.

-

In this paper, an autonomous underwater vehicle manipulator system (UVMS) is modeled considering hydrostatic forces and hydrodynamic effects such as added mass, lift, drag and side forces. The shadowing effects of the links on each other are also taken into account when computing the hydrodynamic forces. The system equations of motion are then derived using NewtonEuler formulation including the thruster dynamics. Next, an inverse dynamics control algorithm is applied for the end-effector trajectory tracking of the UVMS. Simulation results illustrate the effectiveness of the control method

___

  • Mahesh H., Yuh J., Lakshmi R., (1991), “A coordinated control of an underwater vehicle and robot manipulator”, Journal of Robotic Systems, Vol. 8, No. 3, pp. 339–370.
  • De Wit C.C., Diaz E.O., Perrier M., (1998), “Robust nonlinear control of an underwater vehicle/manipulator system with composite dynamics”, Proc. of IEEE Int. Conf. Robotics and Automation, Leuven, Belgium, pp. 452–457.
  • Chung, G.B., Eom, K.S., Yi, B.J., Suh, I.H., Oh, S.R., Cho, Y.J., (2000), “Disturbance for underwater observer-based robust control robotic systems with passive joints”, Proc. of IEEE Int. Conf. Robotics and Automation, 1775–1780.
  • Cui, Y., Yuh, J., (2003), “A unified adaptive force control of underwater vehicle-manipulator systems (UVMS)”, Proc. of IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 1, 553–558.
  • Antonelli G., Chiaverini S., (2004), “Adaptive tracking control of underwater vehicle-manipulator systems based on the virtual decomposition approach”, IEEE Tr. on Robotics and Automation, Vol. 20, pp. 594–602.
  • Ishitsuka, M., Sagara, S., Ishii, K., (2004),” Dynamics analysis and resolved acceleration control of an autonomous underwater vehicle equipped with a manipulator”, Int. Symp. Underwater Technology, 277–281.
  • Dos Santos C.H., Bittencourt G., Guenther R., De Pieri E., (2006), “A Fuzzy hybrid singularity avoidance for underwater vehicle-manipulator systems”, Info. Control Problems in Manufacturing-MCOM, pp. 209-214.
  • Soylu S., Buckham B.J., Podhorodeski R.P., (2010), “Redundancy resolution for UV mobile manipulators”, Ocean Eng., Vol. 37, pp. 325–343.
  • Han J., Park J., Chung W.K., (2011), “Robust coordinated motion control of an underwater vehicle-manipulator system with minimizing restoring moments”, Ocean Engineering, Vol. 38, pp. 1197–1206.
  • Ismail, Z. H., Dunnigan, M.W., (2011), “Tracking control scheme for an underwater vehicle-manipulator system with single and multiple of sub-region and sub-task objectives”, IET - Control Theory & Applications, Vol. 5, 721–735.
  • Korkmaz, O., (2012), “Modeling and control of underwater vehicle manipulator systems”, Ph.D. Thesis, Middle East Technical University, Ankara, Turkey.
  • Fossen T. I., (1994), “Guidance and control of ocean vehicles”, John Wiley & Sons, New York.
  • -
  • Imlay, F. H., (1961), “The complete expressions for added mass of a rigid body moving in an ıdeal fluid”, Technical Report DTMB 1528, David Taylor Model Basin, Washington D.C.
  • Yoerger D. R., Cooke J.G., Slotine J.J.E., (1990), “The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design”, IEEE J. of Oceanic Eng., Vol. 15, pp. 167-178.