A Common-Gate, $g_m$-boosting LNA Using Active Inductor-Based Input Matching for 3.1–10.6 GHz UWB Applications

This paper presents the circuit of a low-noise amplifier (LNA) using active inductor (AI) input matching with common gate (CG) current-reused technique. This configuration is implemented in 90 nm CMOS and enables to achieve high power-gain ($S_{21}$) with ultra-wideband (UWB) input matching at low power levels. Utilization of modified high-Q AI at the input side of the proposed LNA reduces the number of inductors and achieves UWB from only two inductors. Proposed LNA dissipates 10.4 mW from 1.0 V supply and exhibits an $S_{21}$ response of 18.0 ± 0.8 dB for 3.1–10.6 GHz with a maximum and average S21 of 18.8 dB and 18.22 dB, respectively. The proposed LNA has noise-figure (NF) equal to 3.36–4.68 dB, with input ($S_{11}$) and output ($S_{22}$) reflection coefficients of less than −9.3 dB and −11.35 dB, respectively across the entire UWB range.

___

1. G. Aiello, R., and G. Rogerson, “D.: Ultra wideband wireless systems,” IEEE Microw. Mag., vol. 4, no. 2, pp. 36–47, 2003. [CrossRef]

2. S. Shahrabadi, “Ultrawideband LNA 1960–2019: Review,” IET Circuits Devices Syst., vol. 15, no. 8, pp. 697–727, 2021. [CrossRef].

3. D. Im, I. Nam, H. Kim, and K. Lee, “A wideband CMOS low noise amplifier employing noise and IM2 distortion cancellation for a digital TV tuner,” IEEE J. Solid State Circuits, vol. 44, no. 3, pp. 686–698, 2009. [CrossRef]

4. J. Sturm, S. Popuri, and X. Xiang, “A 65 nm CMOS resistive feedback noise canceling LNA with tunable bandpass from 4.6 to 5.8 GHz,” Analog Integr. Circ. Sig. Process., vol. 87, no. 2, pp. 191–199, 2016. [CrossRef]

5. V. Singh, S. Arya, K., and M. Kumar, “Gm-boosted current-reuse inductivepeaking common source LNA for 3.1–10.6 GHz UWB wireless applications in 32 nm CMOS,” Analog. Integr. Circ. Sig. Process., vol. 97, no. 2, pp. 351–363, 2018. [CrossRef]

6. A. A. Roobert, and D. G. N. Rani, “N.: Design and analysis of 0.9 and 2.3 GHz concurrent dual-band CMOS LNA for mobile communication,” Int. J. Circ. Theor. Appl., vol. 48, no. 1, pp. 1–14, 2020. [CrossRef]

7. D. Kalra, V. Goyal, and M. Srivastava, “Design and performance analysis of low power LNA with variable gain current reuse technique,” Analog Integr. Circ. Sig Process, vol. 108, no. 2, pp. 351–361, 2021. [CrossRef]

8. P. Chang, Y., and S. S. Hsu, “H.: A compact 0.1–14 GHz ultra-wideband low noise amplifier in 0.13 μm CMOS,” IEEE Trans. Microw. Theor. Tech., vol. 58, no. 10, pp. 2575–2581, 2010. [CrossRef]

9. M. Parvizi, K. Allidina, and M. N. El-Gamal, “N.: A sub-mW, ultra-low voltage, wideband low-noise amplifier design technique,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 6, pp. 1111–1122, 2015. [CrossRef]

10. B. Guo, J. Chen, L. Li, H. Jin, and G. Yang, “A wideband noise-canceling CMOS LNA with enhanced linearity by using complementary nMOS and pMOS configurations,” IEEE J. Solid State Circuits, vol. 52, no. 5, pp. 1331–1344, 2017. [CrossRef]

11. H. Zhang, X. Yan, J. Shi, T. Lu, J. Yang, and F. Lin, “A 0.5–5.6 GHz inductorless wideband LNA with local active feedback,” IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM), pp. 164–168, 2018. [CrossRef]

12. B. Guo, J. Gong, and Y. Wang, “A wideband differential linear low-noise transconductance amplifier with active-combiner feedback in complementary MGTR configurations,” IEEE Trans. Circuits Syst. I., vol. 68, no. 1, pp. 224–237, 2021. [CrossRef]

13. S. Ziabakhsh, H. Alavi-Rad, M. Yagoub, and C., “E.: A high gain low power 2–14 GHz ultra wide band CMOS LNA for wireless receivers,” Int. J. Electron. Commun., vol. 66, no. 9, pp. 727–731, 2012. [CrossRef]

14. S. Woo, J. Shao, and H. Kim, “A gm-boosted common-gate CMOS lownoise amplifier with high P1dB,” Analog Integr. Circ. Sig Process, vol. 80, no. 1, pp. 33–37, 2014. [CrossRef]

15. A. Sahafi, J. Sobhi, and Z. D. Koozehkanani, “Linearity improvement of gm-boosted common gate LNA: Analysis to design,” Microelectron. J., vol. 56, pp. 156–162, 2016. [CrossRef]

16. S. Pandey, and J. Singh, “A low power and high gain CMOS LNA for UWB applications in 90 nm CMOS process,” Microelectron. J., vol. 46, no. 5, pp. 390–397, 2015. [CrossRef]

17. B. Guo, and X. Li, “A 1.6–9.7 GHz CMOS LNA linearized by post distortion technique,” IEEE Microw. Wirel. Compon. Lett., vol. 23, no. 11, pp. 608–610, 2013. [CrossRef]

18. B. Guo, J. Chen, H. Chen, and X. Wang, “A 0.1–1.4 GHz inductorless lownoise amplifier with 13 dBm IIP3 and 24 dBm IIP2 in 180 nm CMOS,” Mod. Phys. Lett. B, vol. 32, no. 2, 2018. [CrossRef]

19. M. Lai, T., and H. Wai, “T.: Ultra low power cascaded CMOS LNA with positive feedback and bias optimization,” IEEE Trans. Microw. Theor. Tech., vol. 61, no. 5, pp. 1934–1945, 2013. [CrossRef]

20. S. Pandey, T. Gawande, and P. N. Kondekar, “N.: A 3.1–10.6 GHz UWB LNA based on self cascode technique for improved bandwidth and high gain,” Wirel. Personal Commun., vol. 101, no. 4, pp. 1867–1882, 2018. [CrossRef]

21. P. Heydari, ‘Design and analysis of a performance-optimized CMOS UWB distributed LNA,” IEEE J. Solid State Circuits, vol. 42, no. 9, pp. 1892–1905, 2007. [CrossRef]

22. R. Saadi, I., and A. Hakimi, “Low-power and low-noise complementary metal oxide semiconductor distributed amplifier using the gain-peaking technique,” Int. J. Circ. Theor. Appl., vol. 45, pp. 319–337, 2016. [CrossRef]

23. M. Hayati, S. Cheraghaliei, and S. Zarghami, “Design of UWB low noise amplifier using noise-canceling and current-reused techniques,” Integration, vol. 60, pp. 232–239, 2018. [CrossRef]

24. F. Daryabari, A. Zahedi, A. Rezaei, and M. Hayati, “Low-power ultra-wideband LNA employing CS-CD current-reuse and gain-controller resistor technique in 0.180-µm CMOS technology,” Analog Integr. Circ. Sig Process, vol. 101, no. 2, pp. 187–199, 2019. [CrossRef]

25. M. Hayati, F. Daryabari, and S. Zarghami, “Ultra-wideband complementary metal-oxide semiconductor low noise amplifier using CS-CG noise-cancellation and dual resonance network techniques,” IET Circuits Devices Syst., vol. 14, no. 2, pp. 200–208, 2020. [CrossRef]

26. R. M. Weng, and R. C. Kuo, “C. “An ω0-Q tunable CMOS active inductor for RF bandpass filters”. Inter. Sym. Sig. Sys. Elec., vol. 571–574, 2007. [CrossRef]

27. L. Ma, Z. -G. Wang, J. Xu, and N. M. Amin, “A high-linearity wideband common-gate LNA with a differential active inductor,” IEEE Trans. Circuits Syst. II, vol. 64, no. 4, pp. 402–406, 2017. [CrossRef]

28. J. Jang, H. Kim, G. Lee, and T. W. Kim, “W.: Two-stage compact wideband flat gain low-noise amplifier using high-frequency feed-forward active inductor,” IEEE Trans. Microw. Theor. Tech., vol. 67, no. 12, pp. 4803–4811, 2019. [CrossRef]

29. N. Koirala, “Active inductor-based ultra-wideband low noise amplifier for rejection of wireless LAN interference,” Radioelectron. Commun. Syst., vol. 64, no. 1, pp. 26–35, 2021. [CrossRef]