A Detailed Overview of 6G and Related Technologies

While fifth-generation wireless communication system (5G) implementation is an ongoing process and many devices are coming up that support 5G, the next generation of communication technology research, sixth-generation wireless communication system (6G), is already underway. 6G is not only going to be 100 times faster than the current generation of wireless communication network, 5G, but is also going to open a world of possibilities for other technologies, and it can prove to be a platform for future technologies to be developed and enhanced on. However, there are also some challenges related to the implementation of 6G, and in this paper, we will be discussing those challenges and the possible solutions.

___

1. L. U. Khan, I. Yaqoob, M. Imran, Z. Han, and C. S. Hong, “6G wireless systems: A vision, architectural elements, and future directions,” IEEE Access, vol. 8, pp. 147029–147044, 2020. [CrossRef]

2. H. Viswanathan and P. E. Mogensen, “Communications in the 6G era,” IEEE Access, vol. 8, pp. 57063–57074, 2020. [CrossRef]

3. L. Zhang, Y. Liang, and D. Niyato, “6G Visions: Mobile ultra-broadband, super internet-of-things, and artificial intelligence,” China Commun., vol. 16, no. 8, pp. 1–14, 2019. [CrossRef]

4. G. Gui, M. Liu, F. Tang, N. Kato, and F. Adachi, “6G: Opening new horizons for integration of comfort, security, and intelligence,” IEEE Wirel. Commun., vol. 27, no. 5, pp. 126–132, 2020. [CrossRef]

5. S. Zhang, C. Xiang, and S. Xu, “6G: Connecting everything by 1000 times price reduction,” IEEE Open J. Veh. Technol., vol. 1, 107–115, 2020.

6. I. F. Akyildiz, A. Kak, and S. Nie, “6G and beyond: The future of wireless communications systems,” IEEE Access, vol. 8, pp. 133995–134030, 2020. [CrossRef]

7. K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y. A. Zhang, “The roadmap to 6G: AI empowered wireless networks,” IEEE Commun. Mag., vol. 57, no. 8, pp. 84–90, 2019.

8. T. B. Ahammed and R. Patgiri, “6G and AI: The emergence of future forefront technology,” Adv. Commun. Tech. Signal Process. (ACTS), vol. 2020, pp. 1–6, 2020. [CrossRef]

9. A. Yazar and H. Arslan, “A waveform parameter assignment framework for 6G with the role of machine learning,” IEEE Open J. Veh. Technol., vol. 1, pp. 156–172, 2020. [CrossRef]

10. Y. Liu, X. Yuan, Z. Xiong, J. Kang, X. Wang, and D. Niyato, “Federated learning for 6G communications: Challenges, methods, and future directions,” China Commun., vol. 17, no. 9, pp. 105–118, 2020. [CrossRef]

11. S. Wang, T. Sun, H. Yang, X. Duan, and L. Lu, “6G network: Towards a distributed and autonomous system,” in 2nd 6G Wireless Summit (6G SUMMIT), vol. 2020, 2020, pp. 1–5. [CrossRef]

12. A. Jagannath, J. Jagannath, and T. Melodia, “Redefining wireless communication for 6G: Signal processing meets deep learning,” arXiv, p. 2004.10715, 2020 [Online]. Available: http://arxiv.org/abs/2004.10715.

13. C. She et al., “A tutorial on ultrareliable and low-latency communications in 6G: Integrating domain knowledge into deep learning,” Proc. IEEE, vol. 109, no. 3, pp. 204–246, 2021. [CrossRef]

14. C. Yizhan, W. Zhong, H. Da, and L. Ruosen, “6G is coming: Discussion on key candidate technologies and application scenarios,” in Int. Conf. Comput. Commun. Network Security (CCNS), vol. 2020, 2020, pp. 59–62. [CrossRef]

15. N. H. Mahmood, H. Alves, O. A. López, M. Shehab, D. P. M. Osorio, and M. Latva-Aho, “Six key features of machine type communication in 6G,” in 2nd 6G Wireless Summit (6G SUMMIT), vol. 2020, 2020, pp. 1–5. [CrossRef]

16. S. Zhang, J. Liu, H. Guo, M. Qi, and N. Kato, “Envisioning device-to-device communications in 6G,” IEEE Network, vol. 34, no. 3, pp. 86–91, 2020. [CrossRef]

17. S. Liao and L. Ou, “High-speed millimeter-wave 5G/6G image transmission via artificial intelligence,” in IEEE Asia Pac. Microwave Conf. (APMC), vol. 2020, 2020, pp. 655–657. [CrossRef]

18. M. E. Leinonen, M. Jokinen, N. Tervo, O. Kursu, and A. Pärssinen, “Radio interoperability in 5G and 6G multiradio base station,” in 92nd Veh. Technol. Conference (VTC2020-Fall), Victoria, BC, Canada, vol. 2020. IEEE Publications, 2020, pp. 1–5. [CrossRef]

19. J. Zhu, M. Zhao, S. Zhang, and W. Zhou, “Exploring the road to 6G: ABC — Foundation for intelligent mobile networks,” China Commun., vol. 17, no. 6, pp. 51–67, 2020. [CrossRef]

20. W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Network, vol. 34, no. 3, pp. 134–142, 2020. [CrossRef]

21. M. Z. Chowdhury, M. Shahjalal, S. Ahmed, and Y. M. Jang, “6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions,” IEEE Open J. Commun. Soc., vol. 1, pp. 957–975, 2020. [CrossRef]

22. R. Sekaran, R. Patan, A. Raveendran, F. Al-Turjman, M. Ramachandran, and L. Mostarda, “Survival study on Blockchain based 6G-enabled mobile edge computation for IoT automation,” IEEE Access, vol. 8, pp. 143453–143463, 2020. [CrossRef]

23. T. Nguyen, N. Tran, L. Loven, J. Partala, M. Kechadi, and S. Pirttikangas, “Privacy-aware Blockchain innovation for 6G: Challenges and opportunities,” in 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, vol. 2020, 2020, pp. 1–5. [CrossRef]

24. W. Sun, S. Li, and Y. Zhang, “Edge caching in blockchain empowered 6G,” China Commun., vol. 18, no. 1, pp. 1–17, 2021. [CrossRef]

25. R. C. Moioli et al., “Neurosciences and 6G: Lessons from and needs of communicative brains,” arXiv, p. 2004.01834, 2020.

26. W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road towards 6G: A comprehensive survey,” IEEE Open J. Commun. Soc., vol. 2, pp. 334–366, 2021. [CrossRef]

27. G. Wikström et al., “Challenges and technologies for 6G,” in 2nd 6G Wireless Summit (6G SUMMIT), vol. 2020, 2020, pp. 1–5. [CrossRef]

28. M. S. Sim, Y. Lim, S. H. Park, L. Dai, and C. Chae, “Deep learning-based mmWave beam selection for 5G NR/6G with Sub-6 GHz channel information: Algorithms and prototype validation,” IEEE Access, vol. 8, pp. 51634–51646, 2020. [CrossRef]

29. A. Ramírez-Arroyo, P. H. Zapata-Cano, A. Palomares-Caballero, J. Carmona-Murillo, F. Luna-Valero, and J. F. Valenzuela-Valdés, “Multilayer network optimization for 5G & 6G,” IEEE Access, vol. 8, pp. 204295–204308, 2020. [CrossRef]

30. S. Zhang, G. Wang, and C. I, “Is mmWave ready for cellular deployment?,” IEEE Access, vol. 5, pp. 14369–14379, 2017. [CrossRef]

31. Ericsson, “Ericsson, Qualcomm and U.S. Cellular achieve extended-range 5G data call over mmWave,” SEP. 17, 2020. Available: https://www.ericsson. com/en/press-releases/2020/9/ericsson-qualcomm-and-u.s.-cellularachieve-extended-range-5g-data-call-over-mmwave.

32. P. Chatzimisios, D. Soldani, A. Jamalipour, A. Manzalini, and S. K. Das, “Special issue on 6G wireless systems,” J. Commun. Netw., vol. 22, no. 6, pp. 440–443, 2020. [CrossRef]

33. V. Raghavan and J. Li, “Evolution of physical-layer communications research in the post-5G era,” IEEE Access, vol. 7, pp. 10392–10401, 2019. [CrossRef]

34. L. Zhu, Z. Xiao, X. Xia, and D. Oliver Wu, “Millimeter-wave communications with non-orthogonal multiple access for B5G/6G,” IEEE Access, vol. 7, pp. 116123–116132, 2019. [CrossRef]

35. J. Heinonen, P. Korja, T. Partti, H. Flinck, and P. Pöyhönen, “Mobility management enhancements for 5G low latency services,” in IEEE Int. Conf. Commun. Work. (ICC), vol. 2016, 2016, pp. 68–73. [CrossRef]

36. W. Hong et al., “The role of millimeter-wave technologies in 5G/6G wireless communications,” IEEE J. Microw., vol. 1, no. 1, pp. 101–122, 2021. [CrossRef]

37. F. Cogen, E. Aydin, N. Kabaoglu, E. Basar, and H. Ilhan, “Generalized code index modulation and spatial modulation for high rate and energyefficient MIMO systems on Rayleigh block-fading channel,” IEEE Syst. J., vol. 15, no. 1, pp. 538–545, 2021. [CrossRef]

38. S. Chen, S. Sun, and S. Kang, “System integration of terrestrial mobile communication and satellite communication—The trends, challenges and key technologies in B5G and 6G,” China Commun., vol. 17, no. 12, pp. 156–171. 2020. [CrossRef]

39. E. Yaacoub and M. Alouini, “A key 6G challenge and opportunity—Connecting the base of the pyramid: A survey on rural connectivity,” Proc. IEEE, vol. 108, no. 4, pp. 533–582, 2020. [CrossRef]

40. Y. L. Lee, D. Qin, L. -C. Wang, and G. H. Sim, “6G massive radio access networks: Key applications, requirements and challenges,” IEEE Open J. Veh. Technol., vol. 2, pp. 54–66, 2021. [CrossRef]

41. S. Yan, X. Cao, Z. Liu, and X. Liu, “Interference management in 6G space and terrestrial integrated networks: Challenges and approaches,” Intell. Converged Netw., vol. 1, no. 3, pp. 271–280, 2020. [CrossRef]

42. G. Charbit, D. Lin, K. Medles, L. Li, and I. Fu, “Space-terrestrial radio network integration for IoT,” in 2nd 6G Wireless Summit (6G SUMMIT), vol. 2020, 2020, pp. 1–5. [CrossRef]

43. D. Kalbande, Z. Khan, S. Haji, and R. Haji, “6G-next Gen mobile wireless communication approach,” in 3rd Int. Conf. Electron. Commun. Aerospace Tech. (ICECA), vol. 2019, 2019, pp. 1–6. [CrossRef]

44. S. Han et al., “Artificial-intelligence-enabled air interface for 6G: Solutions, challenges, and standardization impacts,” IEEE Commun. Mag., vol. 58, no. 10, pp. 73–79, 2020. [CrossRef]

45. C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “A new wireless communication paradigm through software-controlled metasurfaces,” IEEE Commun. Mag., vol. 56, no. 9, pp. 162–169, 2018. [CrossRef]

46. M. Pengnoo, M. T. Barros, L. Wuttisittikulkij, B. Butler, A. Davy, and S. Balasubramaniam, “Digital twin for metasurface reflector management in 6G terahertz communications,” IEEE Access, vol. 8, pp. 114580–114596, 2020. [CrossRef]

47. E. Basar, “Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G,” IEEE Trans. Commun., vol. 68, no. 5, pp. 3187–3196, 2020.

48. E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini, and R. Zhang, “Wireless communications through reconfigurable intelligent surfaces,” IEEE Access, vol. 7, pp. 116753–116773, 2019. [CrossRef]