SOSYOBİLİMSEL KONULARDA ARGÜMANTASYONA DAYALI ÖĞRENME UYGULAMALARININ FEN BİLİMLERİ ÖĞRETMEN ADAYLARININ ÖĞRENCİYİ ANLAMA BİLGİLERİNİN GELİŞİMİNE ETKİSİ

Bu araştırmanın amacı, fen bilgisi öğretmen adaylarının sosyobilimsel konularda öğrenciyi anlama bilgilerinin gelişimine argümantasyona dayalı öğrenme uygulamalarının etkisini incelemektir. Araştırmanın örneklemini, 2017-2018 eğitim-öğretim yılı güz döneminde bir devlet üniversitesinin fen bilimleri öğretmenliği programı 4. sınıfında öğrenim gören toplam 60 (deney, n=30, kontrol, n=30) öğretmen adayı oluşturmuştur. Araştırma, nicel ve nitel yöntemlerin bir arada kullanıldığı karma yönteme dayalı olarak sürdürülmüş ve araştırmada öntest-sontest kontrol gruplu deneysel desen kullanılmıştır. Araştırmanın uygulama süreci haftada 2 ders saati olmak üzere 8 haftalık bir süreci içermektedir. Araştırma fen bilgisi öğretmenliği lisans derslerinden Özel Öğretim Yöntemleri- II dersinin uygulama saatlerinde yürütülmüştür. Bu ders saatlerinde deney grubundaki öğretmen adayları sosyobilimsel konularda öğrenciyi anlama bilgisine yönelik hazırlanmış argümantasyon senaryoları üzerinde çalışmışlardır. Kontrol grubundaki öğretmen adayları ise ders sunumları ve sınıf içi aktiviteler yoluyla sosyobilimsel konulara ilişkin bilgilerini yapılandırmışlardır. Araştırmanın verileri, “Sosyobilimsel Konularda Öğrenciyi Anlama Yeterliliği Algısı (SBK-ÖAYA) Ölçeği", “Sosyobilimsel Konularda Öğrenciyi Anlama Bilgisi (SBK-ÖAB) Temsil Formu” ve “Yapılandırılmamış Görüşme Formu” ile toplanmıştır. Araştırmanın nicel verileri karışık ölçümler için iki faktörlü ANOVA testi kullanılarak analiz edilmiştir. Nitel veriler ise içerik analizi yoluyla çözümlenmiştir. Araştırmanın nicel analiz bulguları argümantasyona dayalı öğrenme uygulamalarının fen bilimleri öğretmen adaylarının sosyobilimsel konularda öğrenciyi anlama bilgilerini geliştirmede mevcut öğretim yaklaşımına göre daha etkili olduğunu göstermiştir. Deney grubu öğretmen adaylarının nicel bulgularını desteklemek amacıyla elde edilen nitel bulgular, argümantasyona dayalı öğrenme uygulamalarının öğretmen adaylarının sosyobilimsel konulardaki öğrenciyi anlama bilgisi anlayışlarını olumlu yönde etkilediği ve bu öğretmen mesleki bilgi alanına ilişkin farkındalık oluşturmalarına önemli katkılar sağladığını göstermiştir.

___

  • Abell, S.K. (2007). Research on science teacher knowledge. In S.K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp.1105- 1149). Mahwah, NJ: Lawrence Erlbaum.
  • Acar, Ö., Patton, B. R., & White, A. L. (2015). Prospective secondary science teachers' argumentation skills and the interaction of these skills with their conceptual knowledge. Australian Journal of Teacher Education, 40(9), 132-156.
  • Anderson, D. & Clark, M. (2012). Development of syntactic subject matter knowledge and pedagogical content knowledge for science by a generalist elementary teacher. Teachers and Teaching: Theory and Practice, 18(3), 315–330.
  • Avaamiodou, L. & Zembal-Saul, C. (2005). Giving priority to evidence in science teaching: A first-year elementary teacher’s specialised practices and knowledge. Journal of Research in Science Teaching, 42, 965-968.
  • Aydeniz, M. & Dogan, A. (2016). Exploring the impact of argumentation on pre-service science teachers’ conceptual understanding of chemical equilibrium. Chemistry Education Research and Practice, 17, 111–119.
  • Bailie,A.L.(2017).Developingpreservicesecondaryscienceteachers’pedagogicalcontent knowledge through subject area methods courses: A content analysis. Journal of Science Teacher Education, 28(7), 631–649.
  • Barker, H. L. (2019). The influence of argumentative discourse on pre-service teachers' alternative conceptions of photosynthesis and cellular respiration. Middle Tennessee State University, ProQuest Dissertations Publishing.
  • Berland, L. K. & Reiser, B. J. (2011). How classroom communities make sense of the practice of scientific argumentation. Science Education, 95(2), 191–216.
  • Berry, A., Depaepe, F., & van Driel, J. H. (2016). Pedagogical content knowledge in teacher education. In J. Loughran & M. L. Hamilton (Eds.), International handbook of teacher education (pp. 347–386). Singapore: Springer Singapore. Bilgin, N. (2006). Sosyal bilimlerde içerik analizi teknikler ve örnek çalışmalar. (2. Baskı). Ankara: Siyasal Kitabevi.
  • Bossér, U., Lundin, M., Lindahl, M., & Linder, C. (2015). Challenges faced by teachers implementing socio-scientific issues as core elementsin their classroompractices. European Journal of Science and Mathematics Education, 3(2), 159-176.
  • Barendsen, E. & Henze, I. (2017). Relating teacher PCK and teacher practice using classroom observation. Research in Science Education. https://doi.org/10.1007/ s11165-017-9637-z.
  • Burek, K. & Zeidler, D. L. (2015). Seeing the forest for the trees! Conservation and activism through socioscientific issues. In M.P. Mueller & D.J. Tippins (Eds.) EcoJustice, citizen science and youth activism: Situated tensions for science education (pp 425-442). Dordrecht: Springer International Press.
  • Büyüköztürk, Ş., Çakmak, E., Akgün, Ö., Karadeniz, Ş., & Demirel, F.(2010). Bilimsel araştırma yöntemleri (5. Baskı). Ankara: Pegem Akademi Yayınları.
  • Capobianco, B. M. (2007). Science teacher’ attempts at integrating feminist pedagogy through collaborative action research. Journal of Research in Science Teaching, 44(1), 1-32.
  • Christensen, B. L., Johnson, R. B., & Turner, L. (2014). Research methods, design, and analysis, pearson new ınternational edition. (11th ed). Great Britain: Pearson Education Limited.
  • Cochran, K. F., DeRuiter, J. A., & King, R. A. (1993). Pedagogical content knowing: An integrative model for teacher preparation. Journal of Teacher Education, 44(4), 263–272.
  • Cook, J., Bedford, D., & Mandia, S. (2014). Raising climate literacy through addressing misinformation: Case studies in agnotology-based learning. Journal of Geoscience Education, 62, 296–306.
  • Donnelly, D. F. & Hume, A. (2015). Using collaborative technology to enhance pre- service teachers’pedagogical content knowledge in Science. Research in Science & Technological Education, 33(1), 61-87.
  • De Jong, O. & van Driel, J. (2004). Exploring the development of student teachers’ PCK of the multiple meanings of chemistry topics. International Journal of Science and Mathematics Education, 2, 277–491.
  • Demirel, R. (2015). The effect ofindividual and group argumentation on student academic achievement in force and movement issues. Journal of Theory and Practice in Education (JPTE), 11(3), 916–48.
  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312.
  • Ekborg, M., Ottander, C., Silfver, E., & Simon, S. (2013). Teachers’experience of working with socio-scientific issues: A large scale and in depth study. Research in Science Education, 43(2), 599-617.
  • Evagorou, M. (2011). Discussing a socioscientific issue in a primary school classroom: The case of using a technology-supported environment in formal and nonformal settings. In T. D. Sadler (Ed.), Socio-scientific issues in the classroom. Teaching, learning and research (pp. 133–159). New York, NY: Springer.
  • Evagorou, M. (2015). Elementary school students’ emotions when exploring an authentic socio-scientific issue through the use of models. Science Education International, 26(2), 240-259.
  • Evagorou, M., Guven, D., & Mugaloglu, E. (2014). Preparing elementary and secondary pre-service teachers for everyday science. Science Education International, 25(1), 68-77.
  • Evagorou, M. & Puig Mauriz, B. (2017). Engaging elementary school pre-service teachers in modeling a socioscientific issue as a way to help them appreciate the social aspects of science. International Journal of Education in Mathematics, Science and Technology, 5(2), 113-123.
  • Friedrichsen, P., Van Driel, J. H., & Abell, S. K. (2011). Taking a closer look at science teachingorientations. Science Education, 95, 358–376.
  • Geddis, A. N. (1993). Transforming subject-matter knowledge: The role of pedagogical content knowledge in learning to reflect on teaching. International Journal of Science Education, 15, 673–683.
  • Gess-Newsome, L. & Lederman, N. G. (1993). Preservice biology teachers' knowledge structures as a function of professional teacher education: A year-long assessment. Science Education, 77, 25–45.
  • Gess-Newsome, J., Taylor, J.A., Carlson, J., Gardner, A. L., Wilson, C. D., & Stuhlsatz, M. A. (2017). Teacher pedagogical content knowledge, practice, and student achievement. International Journal of Science Education, 39, 1–20.
  • Glesne, C. (2011). Becoming qualitative researchers: An introduction(4th ed.). Boston, MA: Pearson.
  • Goodnough, K. (2010). Teacher learning and collaborative action research: Generating a “knowledge-of-practice” in the context of science education. Journal of Science Teacher Education, 21(8), 917–935.
  • Gökbulut, Y. (2010). Sınıf öğretmeni adaylarının geometrik cisimler konusundaki pedagojik alan bilgileri. Yayımlanmamış doktora tezi, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
  • Grossman, P. L. (1990). The making of a teacher: Teacher knowledge and teacher education. New York: Teachers College Press.
  • Gunckel, K. L. (2013). Teacher knowledge for using learning progressions in classroom instruction and assessment. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA.
  • Holbrook, J. & Rannikmäe, M. (2009). The meaning of scientific literacy. International Journal of Science and Environmental Education, 4, 275–288.
  • Juhler, M. (2018). Pre-service teachers’reflections on teaching a physicslesson: How does lesson study and content representation affect pre-service teachers’ potential to start developing PCK during reflections on a physics lesson. NORDINA, 14(1), 22-36.
  • Karahan, E. & Roehrig, G. (2016). Use of socioscientific contexts for promoting student agency in environmental science classrooms. Bartin University Journal of Faculty of Education, 5(2), 425 – 442.
  • Karisan, D. & Zeidler, D. L. (2017). Contextualization of nature of science within the socioscientific issues framework: A review of research. International Journal of Education in Mathematics. Science and Technology, 5(2), 139-152.
  • Kıryak, Z. & Çalık, M. (2017). Improving grade 7 students’ conceptual understanding of water pollution via common knowledge construction model. International Journal of Science and Mathematıcs Educatıon, 2(1), 1-22.
  • Kind, V. (2019). Development of evidence-based, student-learningoriented rubrics for pre-service science teachers’ pedagogical content knowledge. International Journal of Science Education, 41(7), 911-943.
  • Klosterman, M. L. & Sadler, T. D. (2010). Multi-level assessment of scientific content knowledge gains associated with socioscientific issues-based instruction. International Journal of Science Education, 32(8), 1017–1043.
  • Klosterman, M., Sadler, T., & Brown, J. (2012). Science teachers’ use of mass media to addresssocio-scientific and sustainability issues. Research in Science Education, 42(1), 51-74.
  • Kowalski, P. & Taylor, A. K. (2009). The effect of refuting misconceptions in the introductory psychology class. Teaching of Psychology, 36, 153–159.
  • Kuhn, D. & Crowell, A. (2011). Dialogic argumentation as a vehicle for developing young adolescent's thinking. Psychological Science, 22(4), 545–552.
  • Lambert, J. L. & Bleicher, R. E. (2017). Argumentation as a strategy for increasing preservice teachers’understanding of climate change, a key globalsocioscientific issue. International Journal of Education in Mathematics, Science and Technology, 5(2), 101-112.
  • Lee, H., Chang, H., Choi, K., Kim, S., & Zeidler, D.L. (2012). Developing character and values for global citizens: Analysis of pre-service science teachers’ moral reasoning on socioscientific issues. International Journal of Science Education, 34(6), 925–953.
  • Lee, Y. C. & Grace, M. (2012). Students’ reasoning and decision making about a socioscientific issue: A cross-context comparison. Science Education, 96(5), 787–807.
  • Lee, H. S., Liu, O. L., Pallant, A., Roohr, K. C., Pryputniewicz, S., & Buck, Z. E. (2014). Assessment of uncertainty-infused scientific argumentation. Journal of Research in Science Teaching, 51(5), 581-605.
  • Levinson, R. (2006). Towards a theoretical framework for teaching controversial socio- scientific issues. International Journal of Science Education, 28(10), 1201–1224.
  • Levinson, R. & Turner, S. (2001). Valuable lessons: Engaging with the social context of science in schools. London: The Wellcome Trust.
  • Loughran, J., Mulhall, P. and Berry, A. (2004). In search of pedagogical knowledge in science: Developing ways of articulating and documenting professional practice. Journal of Research in Science Teaching, 41, 370–391.
  • Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge: The construct and its implications for science education (pp. 95–132). Dordrecht, The Netherlands: Kluwer Academic Publishers.
  • Martín-Gámez, C. & Erduran, S. (2018). Understanding argumentation about socio- scientific issues on energy: a quantitative study with primary pre-service teachers in Spain. Journal Research in Science & Technological Education, 36(4), 463- 483.
  • Morris, H. ( 2014). Socioscientific issues and multidisciplinarity in school science textbooks. International Journal of Science Education, 36, 1137–1158.
  • Mueller, M. P. & Zeidler, D. L. (2010). Moral–ethical character and science education: Ecojustice ethics through socioscientific issues (SSI). In D. Tippins, M. Mueller, M. van Eijck, & J. Adams (Eds.), Cultural studies and environmentalism: The confluence of ecojustice, place-based (science) education, and indigenous knowledge systems (pp. 105–128). New York: Springer.
  • Muğaloğlu, E. Z., Doğança Küçük, Z., & Güven, D. (2016). Pre-service science teachers’ self-efficacy beliefs to teach socio-scientific issues. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 29(1), 95-110.
  • NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: The National Academies Press.
  • Nilsson, P. & Karlsson, G. (2019). Capturing student teachers’ pedagogical content knowledge (PCK) using CoRes and digital technology. International Journal of Science Education, 41(4), 419-447.
  • Orland-Barak, L. (2014). Mediation in mentoring: A synthesis of studies in teaching and teacher education. Teaching and Teacher Education, 44, 180–188.
  • Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020.
  • Ottander, C. & Ekborg, M. (2012). Students’ experience of working with socioscientific issues—a quantitative study in secondary school. Research in Science Education, 42, 1147–1163.
  • Özden, M. (2015). Prospective elementary school teachers’ views about socioscientific ıssues: a concurrent parallel design study. International Electronic Journal of Elementary Education, 7(3), 333-354.