Protez Kaide Materyali Olarak Kullanılan Akrilik Rezinlerin Kopolimerizasyon Yöntemiyle Güçlendirilmesi

Hareketli protezlerde kullanılan akrilik kaide rezinlerinin beklenen ideal mekanik özellikleri gösterememesi sonucunda materyalin fiziksel ve kimyasal özelliklerinin arttırılması amacıyla çeşitli yöntemler geliştirilmiştir. Kopolimerizasyon mekanizması ile kimyasal yapısı modifiye edilen dental polimerlerin fiziksel ve mekanik özellikleri geliştirilebilmektedir. Bu makale, protez kaide rezinlerinin kopolimerizasyon yöntemiyle güçlendirilmesini ve kopolimerizasyon olayının akrilik rezinlerin fiziksel ve mekanik özellikleri üzerindeki etkilerini ortaya koyan bir literatür derlemesi sunmaktadır

Reinforcement Of Acrylic Resin Denture Base Material By Copolymerisation Mechanism

Several methods have been investigated to improve the physical and chemical properties of denture base resins due to the lack of ideal mechanical properties for the fabrication of removable prostheses. Copolymerisation mechanism improves the physical and mechanical properties of dental polymers by the modification of the chemical structure. This article presents a literature review about reinforcement of denture base resins by the copolymerisation mechanism and the effects of the copolymerisation on the physical and mechanical properties of acrylic resins

___

  • 1. Rawls HR. Dental Polymers. In: Phillips’ Science of Dental Materials. Elsevier Science Ltd St Louis 2003; 610-625.
  • 2. Çalıkkocaoğlu S. Tam Protezler. Üçüncü Baskı. Protez Akademisi ve Gnatoloji Derneği Bilimsel Yayını. İstanbul. 1998; 532-550.
  • 3.McCord JF. Contemporary techniques for denture base fabrication. J Prosthodont 2009; 18: 106-111.
  • 4. Ping-Chaing BK. Polymers in the service of prosthetic dentistry. J Dent 1984; 12 (3): 203-214.
  • 5. Phoenix RD. Denture base materials. Dent Clin North Am 1996; 40: 113-120.
  • 6. Jagger DC, Harrison A, Jandt KD. The reinforcement of dentures: Review. J Oral Rehabil 1999; 26: 185- 194.
  • 7. Pamir AD, Bağış B, Durkan R, Köroğlu A. Tam protez kaide plağı kırılma nedenlerinin değerlendirilmesi. Cumhuriyet Üniv Diş Hek Fak Derg 2007; 10(1): 64-68.
  • 8. Jagger DC, Harrison A. The fractured denture-solving the problem. An update for general dental practice. Prim Dent Care 1998; 5: 159-162.
  • 9. Wisskott HWA, Nichols JI, Belser VC. Stress fatique: Basic principles and prosthodontic implications. Int J Prosthodont 1995; 8: 105-116.
  • 10. Polyzois GL, Tarantili PA, Frangou MJ, Andreopoluos AG. Fracture force, deflection at fracture, and toughness of repaired denture resin subjected to microvawe polymerization or reinforced with wire or glass fiber. J Prosthet Dent 2001; 86(6): 613-619.
  • 11. Lassila V, Holmund I, Koivumaa KK. Bite force and its correlations in different denture types. Acta Odontol Scand 1985; 43: 127-132.
  • 12. Valittu PK. A review of fibre-reinforced denture based resins. J Prosthodont 1996; 5: 270-276.
  • 13. Hargreaves AS. The prevalence of fracture denture A survey. Br Dent J 1969; 126: 451-455.
  • 14. Yli-Urpo A, Lappalainen R, Huuskonen O. Frequency of damage to and need for repairs of removable dentures. Proc Finn Dent Soc 1985; 81: 151-155.
  • 15. Darbar UR, Hugget R, Harrison A. Denture fracture A survey. British Dent J 1994; 176: 342-345.
  • 16. Levent H, Karaağaçlıoğlu L. Protez kaide rezinlerinin güçlendirilmesi. Gazi Üniv Diş Hek Fak Derg 2004; 21(2): 135-142.
  • 17. Rodford RA. Further development and evaluation of high impact strength denture base materials. J Dent 1990; 18: 151-157.
  • 18. Cheremisinoff NP. Advanced Polymer Processing Operations. Noyes Publication, Westwood NJ 1998; 245.
  • 19. Beşergil B. Polimer Kimyası Gazi Kitabevi. Ankara. 2008; 60-72.
  • 20. Qiang Y, Spencer Paulette, Wang Y. Nanoscale patterning in crosslinked methacrylate copolymer networks: An atomic force microscopy study. J Appl Polym Sci 2007; 106(6): 3843-3851.
  • 21. Vuorinen AM, Dyer SR, Lasilla L, Vallittu PK. Effect of rigid polymer filler on mechanical properties of poly-methyl methacrylate denture base materials. Dent Mater 2008; 24: 708-713.
  • 22. Sorai M. Comprehensive Handbook of Calorimetry and Thermal Analysis J. Wiley 2004; 29: 123-13.
  • 23. Diaz AM, Vargas MA, Shaull KL, Laffoon JE, Qian F. Flexural and fatique strengths of denture base resins. J Prosthet Dent 2008; 100(1): 47-51.
  • 24. Memon MS, Yunus N., Abdulrazak AA. Some mechanical properties of a highly cross-linked, microwave polymerized, injection molded denture base polymers. Int J Prosthodont 2001; 14: 214-218.
  • 25. Huang Y, Jones FN. Synthesis of crosslinkable acrylic latexes by emulsion polymerization in the presence of etherified melamine-formaldehyde (MF) resins. Prog Org Coat 1996; 28: 133-141.
  • 26.Usanmaz A, Ateş J, Doğan A. Thermal and Mechanical Properties of Microwave- and Heat-Cured Poly(methyl methacrylate) Used as Dental Base Material. J Appl Polym Sci 2003; 90: 251-256.
  • 27. Cheremisinoff NP. Polymer Characterisation. Laboratory Techniques and Analysis. Noyes Publication. Westwood NJ 1996; 123-128.
  • 28. Chen T, Kusy RP. Effect of methacrylic acid:methyl methacrylate monomer ratios on polymerization rates and properties of polymethyl methacrylates. J Biomed Mater Res 1997; 36(2): 190-199.
  • 29. Arle MJ, Dadmun MD. The reinforcement of polystrene and poly (methyl methacrylate) interfaces using alternative copolymers. Polym 2003; 44: 6883- 6889.
  • 30. Cunha TM, Regis RR, Bonatti MR, Souza RF. Influence of incorporation of fluoroalkyl methacrylates on roughness and flexural strength of a denture base acylic resin. J Appl Oral Sci 2009; 17(2): 103-107.
  • 31. Puri G, Berzins DW, Dhuru VB, Raj PA, Rambhia SK, Dhir G, Dentino AR. Effect of phosphate group addition on the properties of denture base resins. J Prosthet Dent 2008; 100: 302-308.
  • 32. Cho K, AHN Ryu, HS, Seo KH. Mechanical effects according to the type of poly (styrene-co-methyl methacylate) copolymers at polysterene/poly(methyl methacrylate) interfaces. Polym 1996; 37: 21-24.
  • 33. Ayaz EA, Durkan R, Bağış B. The effect of acrylamide incorporation on the thermal and physical properties of denture resins. J Adv Prosthodont 2013; 5(2): 110-117.
  • 34. Ayaz EA, Durkan R. Influence of acrylamide monomer addition to the acrylic denture-base resins on mechanical and physical properties. Int J Oral Sci 2013; 5: 229-235.
  • 35. Meng TR, Latta MA. Physical properties of four acrylic denture base resins. J Contemp Dent Pract 2005; 15: 93-100.
  • 36. Umemoto K, Kurata S. Basic study of a new denture base resin applying hydrophobic methacrylate monomer. Dent Mater J 1997; 16(1): 21-30.
  • 37. Hayakawa I, Akiba N, Keh E, Kasuga Y. Physical properties of a new denture lining material containing a fluoroalkyl methacrylate polymer. J Prosthet Dent 2006; 96: 53-58.
  • 38. Kurata S, Yamazaki N. Synthesis of dimethacryloxy ethyl-1,1,6,6-tetrahydro perfluorohexamethylene- 1,6-dicarbamate as dental base monomers and the mechanical properties of the copolymers of the monomer and methyl methacrylate. Dent Mater J 2011; 30(1): 103-108.
  • 39. Umemoto K, Kurata S, Morishita K, Kawase K. Basic study of a new soft resin applied with bisfunctional siloxane oligomer. Dent Mater J 2007; 26 (5): 656-658.
  • 40. Murthy HB, Shaik S, Sachdeva H, Khare S, Haralur SB, Roopa KT. Effect of Reinforcement Using Stainless Steel Mesh, Glass Fibers, and Polyethylene on the Impact Strength of Heat Cure Denture Base Resin - An In Vitro Study. J Int Oral Health 2015; 7(6): 71-79.
  • 41. Hamouda IM, Beyari MM Addition of glass fibers and titanium dioxide nanoparticles to the acrylic resin denture base material: comparative study with the conventional and high impact types. Oral Health Dent Manage 2014; 13(1): 107-112.