Detection of Gelatinolytic Activity in Deciduous Sound Dentin

INTRODUCTION: The purpose of present study was to demonstrate the intrinsic gelatinolytic activty in sound dentin of primary teeth by detecting and stimulating the activity of these enzymes.METHODS: Sound dentin from 19 extracted primary teeth were collected and cryo-pulverized into a fine powder. Fluorescein conjugate-gelatin DQ Gelatin EnzCheck gelatinase/collagenase kit (Molecular Probes, Eugene, OR, USA) was used as the cleavage substrate. Intrinsic gelatinolytic enzymes were activated by treating sound dentin powder with 4-Aminophenylmercuric acetate (4-APMA, Sigma-Aldrich International GmbH). A full day (24 h) continuous record of fluorescence emission intensity (FEI) was targeted at 535 nm using 96-well plate reader spectrophotometer (Victor 5 Multilabel Plate Reader, PerkinElmer Life Sciences, Boston, MA, USA).RESULTS: Gelatinolytic activity was detected in sound dentin of primary teeth (981,59±115) and 4-APMA treated dentin exhibited higher gelatinolytic activity (1961,78±204), p

___

1.Stralfors A. Studies of the microbiology of caries; the acid fermentation in the dental plaques in situ com- pared with lactobacillus count. J Dent Res 1948; 27: 576-86.

2.Boyd JD, Cheyne VD, Wessels KE. Is the salivary lac- tobacillus count a valid index of activity of dental caries? Proc Soc Exp Biol Med 1949; 71: 535-7.

3.Clapper WE, Heatherman ME. Strain differences in oral lactobacilli and the relation to dental caries. J Bacteriol 1949; 58: 261-8.

4.Hojo S, Takahashi N, Yamada T. Acid profile in cari-ous dentin. J Dent Res 1991; 70: 182-186.

5.Kawasaki K, Featherstone JD. Effects of collagenase on root demineralization. J Dent Res 1997; 76: 588- 595.

6.Chaussain-Miller C, Fioretti F, Goldberg M, MenashiS. The Role of Matrix Metalloproteinases (MMPs) in Human Caries. J Dent Res 2006; 85: 22-23.

7.Tjaderhane L, Larjava H, Sorsa T, Uitto VJ, Larmas M, Salo T. The Activation and Function of Host Matrix Metalloproteinases in Dentin Matrix Breakdown in Caries Lesions. J Dent Res 1998; 77: 1622-1629.

8.Hannas AR, Pereira JC, Granjeiro JM, Tjaderjane L. The role of matrix metalloproteinases in the oral environment. Acta Odonto Scandinavica 2007; 65: 1-13.

9.Katz S, Park KK, Palenick CJ. In Vitro root surface caries studies. J Oral Med 1987; 42: 40-48.

10.Chaussain C, Boukpessi T, Khaddam M, Tjaderhane L, George A, Menashi S. Dentin matrix degrada- tion by host matrix metalloproteinases: inhibition and clinical perspectives toward regeneration. Front Physiol 2013; 4: 1-8.

11.Jain A, Bahuguna R. Role of matrix metalloprotein-ases in dental caries, pulp and periapical inflamma-tion: An overview. J Oral Bio and Craniofac Res 2015; 30: 212-218.

12.Mazzoni A, Mannello F, Tay FR, et al. Zymograph-ic Analysis and Characterization of MMP-2 and -9 Forms in Human Sound Dentin. J Dent Res 2007; 86: 436-440.

13.Santos J, Carrilho M, Tervahartiala T, et al. Determi- nation of Matrix Metalloproteinases in Human Ra- dicular Dentin. J Endod 2009; 35: 686-689.

14.Sulkala M, Larmas M, Sorsa T, Salo T, TjaderhaneL. The Localization of Matrix Metalloproteinase-20 (MMP-20, Enamelysin) in Mature Human Teeth. J Dent Res 2002; 81: 603-607.

15.Vidal CMP, Tjaderhane L, Scaffa PM, et al. Abun- dance of MMPs and Cysteine Cathepsins in Car- ies-affected Dentin. J Dent Res 2014; 93: 269-274.

16.Stape THS, Tjäderhane L, Tezvergil-Mutluay A, Da Silva WG, Dos Santos Silva AR, da Silva WJ, Marques MR. In situ analysis of gelatinolytic ac- tivity in human dentin. Acta Histochem. 2018 Feb;120(2):136-141.

17.Bedran-Russo AK, Pereira PN, Duarte WR, Okuyama K, Yamauchi M. Removal of dentin matrix proteo-glycans by trypsin digestion and its effect on den-tin bonding. J Biomed Mater Res B Appl Biomater 2008; 85: 261-266.

18.Jackson SL, Vann Jr WF, Kotch JB, Pahel BT, Lee JY. Impact of Poor Oral Health on Children’s School Attendance and Performance. Am J of Public Health 2011; 101: 1900-1906.

19.Tezvergil-Mutluay A, Mutluay M, Seseogullari-Di- rihan R, Agee KA, Key WO, Scheffel DL, Breschi L, Mazzoni A, Tjäderhane L, Nishitani Y, Tay FR, Pashley DH. Effect of phosphoric acid on the deg- radation of human dentin matrix. J Dent Res 2013; 92: 87-91.

20.Fernandez S, Geueke B, Delgado O, Coleman J, Hat- ti- Kaul R. β-Galactosidase from cold-adapted bacte- rium: purification, character-ization, and application for lactose hydrolysis. Appl Microbiol Biotechnol 2002; 58: 313-321

21.Berberich JA, Yang LW, Madura J, Bahar I, Russell AJ. A stable three-enzyme creatinine biosensor. I. Impact of structure, function and environment on PEGylated and immobilized sarcosine oxidase. Acta Biomater 2005; 1: 173-181.

22.Roessl U, Nahálka J, Nidetzky B. Carrier-free im- mobilized enzymes for biocatalysis. Biotechnol Lett 2010; 32: 341-350.

23.Brömme D, Wilson S. Role of cysteine cathepsins in extracellular proteolysis. In: Extracellular matrix degradation. Parks WC, Mecham RP, editors. Ber- lin: Springer-Verlag, 2011 edition, p.26.

24.Nӧr J, Feigal R, Dennison J, Edwards C. Dentin Bonding: SEM Comparison of the Dentin Surface in Primary and Permanent Teeth. Pediatr Dent 1997; 16: 246-252.

25.Bridi EC, Leme-Kraus AA, Basting RT, Bedran-Rus-so AK. Long-term nanomechanical properties and gelatinolytic activity of titanium tetrafluoride-treat- ed adhesive dentin interface. Dent Mater 2019; 35: 1471-1478.

26.Mazzoni A, Mannello F, Tay FR, et al. Zymograph- ic analysis and characterization of MMP-2 and -9 forms in human sound dentin. J Dent Res 2007; 86: 436-40. Erratum in: J Dent Res 2007; 86: 792.

27.Chibinski AC, Gomes JR, Camargo K, Reis A, Wam- bier DS. Bone sialoprotein, matrix metalloprotein- ases and type I collagen expression after sealing infected caries dentin in primary teeth. Caries Res 2014; 48: 312-9.