1D TAŞKIN MODELLEMELERİ AÇISINDAN TOPO DEM VE ALOS DSM VERİLERİNİN KARŞILAŞTIRILMASI: ALARA ÇAYI ÖRNEĞİ

Günümüzde doğal afet çalışmalarında yaygın olarak kullanılan sayısal yükselti modelleri (Topo DEM) ve sayısal arazi modelleri (Alos DSM) verileri taşkın dinamiklerinin anlaşılmasında da önemli bir yer tutmaktadır. Taşkınların hidrodinamik açıdan anlaşılmasında ve analiz edilmesinde kullanılan bu veriler aynı zamanda tehlike ve risk çalışmalarında da büyük öneme sahiptir. Bu çalışma Alara Çayı havzasına ait10m çözünürlükte Topo DEM ve 30m çözünürlükte Alos DSM verileri bir boyutlu (1D) taşkın modeli kapsamında değerlendirilmiştir. Çalışma sahasındaki 1D hidrolik taşkın model sonucunda yayılış-hız-derinlik özellikleri taşkın ıslah dönemi öncesi dönemde elde edilen DEM ve taşkın ıslah dönemi sonrası elde edilen DSM verileri üzerinden ele alınmıştır. Topo DEM ve Alos DSM verilerinde oluşturulan hidrolik modellemede, farklı tekrarlama sıklığına bağlı olarak maksimum akım değerleri test edilmiştir. Topo DEM verisinin taşkın ıslah döneminden önce üretilmiş olması ve güncel topografyayı temsil etmemesi nedeniyle taşkın modellemesinde özellikle yayılış alanlarında farklılıkların ortaya çıkmasına neden olmuştur. Maksimum yayılış alanı Topo DEM verisinde 3.60 km2 iken Alos DSM verisinde 3.24 km2’dir. Her iki modelde de taşkın yayılış alanının birkaç nokta dışında benzer sonuçlar taşıması Alos DSM 30m yüzey verisinin güncel olmayan topografyalarda yapılacak taşkın çalışmalarında kullanılabileceğini göstermektedir.

Comparison of topo DEM and ALOS DSM in terms of 1D flood modeling: A case study from Alara River (Antalya-Turkey)

Digital Elevation Models (DEM) and digital surface models (DSM) data are widely used in natural disasters, and they have an important to understand flood dynamics at present. Also, these DEM and DSM data have great importance in hazard and risk management studies and they are widely used for understanding the hydrodynamic of the floods. In this study, Alos DSM 30m and Topo DEM 10m data were evaluated within the scope of one dimensional (1D) flood modeling in the Alara River catchment. Extent, depth and velocity characteristics of floods are discussed over the DEM and DSM data obtained before and after the flood reclamation period, respectively. Maximum flow amounts are tested based on different return periods such as 10-50-100-1000 yrs via the hydraulic model created by Topo DEM and Alos DSM models. As a result, the flood extent in the study area did not change many indifferent return periods. DEM and DSM data have different results in terms of inundation-depth and velocity characteristics. Also, models show that the embankments have prevented the spread of water to the environment. It is seen that the water spreading over wide areas in Topo DEM data, does not spread much around the Alos DSM data except for certain points. Due to Topo DEM data was produced before the flood rehabilitation period and did not represent the present topography, it led to the existence of differences in flood modeling, especially in the spread areas. While the maximum spreading area is 3.60 km2 in Topo DEM, it is 3.24 km2 in Alos DSM. Both models carry similar results of the flood spreading area except for a few points show that in non-updated topography the surface Alos DSM 30m data can be used in flood studies.

Kaynakça

Akıncı, H., Erdoğan, S. 2014. Designing a flood forecasting and inundation-mapping system integrated with spatial data infrastructures for Turkey. Nat Hazards 71:895–911. https://doi.org/10.1007/s11069-013-0939-9

Alaghmand, S., Abdullah, R., Abustan, I., Behdokht, V. 2010. GIS-based River Flood Hazard Mapping in Urban Area (A Case Study in Kayu Ara River Basin, Malaysia)

Azizian, A., Brocca, L. 2020. Determining the best remotely sensed DEM for flood inundation mapping in data sparse regions. Int J Remote Sens 41:1884–1906. https://doi.org/10.1080/01431161.2019.1677968

Beven, K. J. ve Kirkby, M. J. 1979. “A physically based, variable contributing area model of basin hydrology” Hydrol. Sci. B., 24, 43–69.

Boulton, S.J., Stokes, M. 2018. Which DEM is best for analyzing fluvial landscape development in mountainous terrains? Geomorphology 310:168–187. https://doi.org/https://doi.org/10.1016/j.geomorph.2018.03.002

Boyraz, U., Gülbaz, S., Kazezyılmaz-Alhan, C.M. 2014. A Case Study: Flood Analysis of Çayırova Stream in Turkey with a Hydrodynamic Model. Word J Int Linguist Assoc 1–22

Brandimarte, L., Di Baldassarre, G. 2012. Uncertainty in design flood profiles derived by hydraulic modelling. Hydrol Res 43:753–761. doi: 10.2166/nh.2011.086

Brázdil, R., Kundzewicz, Z.W., Benito, G. 2006. Historical hydrology for studying flood risk in Europe. Hydrol Sci J 51:739–764. https://doi.org/10.1623/hysj.51.5.739

Brown, J.D., Spencer, T., Moeller, I. 2007. Modeling storm surge flooding of an urban area with particular reference to modeling uncertainties : A case study of Canvey Island , United Kingdom. 43:1–22. https://doi.org/10.1029/2005WR004597

Büchele B, Kreibich H, Kron A, vd. 2006. Flood-risk mapping: Contributions towards an enhanced assessment of extreme events and associated risks. Nat Hazards Earth Syst Sci 6:483–503. https://doi.org/10.5194/nhess-6-485

Chow, V. Te. 1959. Open-Channel Hydraulics. McGraw Hill Inc.New York, NY

Curebal, I., Efe, R., Ozdemir, H., Soykan, A., Sönmez, S. 2015. GIS-based approach for flood analysis: case study of Keçidere flash flood event (Turkey). Geocarto Int 31:355–366. https://doi.org/10.1080/10106049.2015.1047411

Daniels, J.M. 2007. Flood hydrology of the North Platte River headwaters in relation to precipitation variability. J Hydrol 344:70–81. https://doi.org/10.1016/j.jhydrol.2007.06.020

De Waele, J., Martina, M.L.V., Sanna, L. vd. 2010. Flash flood hydrology in karstic terrain: Flumineddu Canyon, central-east Sardinia. Geomorphology 120:162–173. https://doi.org/10.1016/j.geomorph.2010.03.021

Demir, V., Kisi, O. 2016. Flood Hazard Mapping by Using Geographic Information System and Hydraulic Model: Mert River, Samsun, Turkey. Adv Meteorol 2016:. https://doi.org/10.1155/2016/4891015

DSİ (Devlet Su İşleri D09A0117 Alarahan ). 1969-2014 Akım Verileri

Erinç, Sırrı. 1996. Klimatoloji ve Metotları (Genişletilmiş 4. Baskı), Alfa Basım Yayım Dağıtım, İstanbul. Ertek, T.A. 2017. Antropojenik Jeomorfoloji: Konusu, Kökeni ve Amacı. Türk Coğrafya Derg 69:69–79. https://doi.org/10.17211/tcd.319409

Federal Emergency Management Agency (FEMA). Flood hazard mapping, Washington, D.C.

Fijko, R., Zeleňáková, M. 2016. The HEC RAS model of regulated stream for purposes of flood risk reduction. Sel Sci Pap - J Civ Eng 11:59–70. https://doi.org/10.1515/sspjce-2016-0007

Fural, Ş., Cürebal, İ., İnan, F. 2019. Elmalı'da (Antalya) Yağışın Tetiklediği Sel Taşkın ve Çamur Akıntısı Afetlerinin Jeomorfolojik Analizi Antalya. Jeomorfolojik Araştırmalar Dergisi. 49–61

Gallegos, H.A., Schubert, J.E., Sanders, B.F. 2009. Advances in Water Resources Two-dimensional , high-resolution modeling of urban dam-break flooding : A case study of Baldwin Hills , California. Adv Water Resour 32:1323–1335. https://doi.org/10.1016/j.advwatres.2009.05.008

Gharbi, M., Soualmia, A., Dartus, D., Masbernat, L. 2016. Comparison of 1D and 2D Hydraulic Models for Floods Simulation on the. Coden: Jmesc 7:3017–3026

Grabs, T., Seibert, J., Bishop, K., Laudon, H. 2009. Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model. Journal of Hydrology 373 15-23

Gumbel, E.J. 1958. Statistics of extremes. New York, Columbia University Press

Gürer, I., Uçar, I. 2009. Flood Disasters’ Inventory in Turkey in 2009. Elev Int Symp Water Manag Hydraul Eng 371–380 Haktanir, T. 1991. Statistical modelling of annual maximum flows in Turkish rivers. Hydrol Sci J 36:367–389. https://doi.org/10.1080/02626669109492520

Hijmans, R.J., S.E. Cameron, J.L., Parra, P.G., Jones., A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978.

Horritt, M., Bates, P.D. 2002. Evaluation of 1D and 2D numerical models for predicting river flood inundation’. J Hydrol 268:87–99

Hsu, M.H., Chen, S.H., Chang, T.J. 2000. Inundation simulation for urban drainage basin with storm sewer system. 234:21–37

IACWD. 1982. Guidelines for determining flood flow frequency. Bulletin #17B of the Hydrology Subcommittee. 73. https://doi.org/http://dx.doi.org/10.3133/tm4–BXX/

Karabulut, M., Özdemir, H. 2015. Comparison of basin morphometry analyses derived from different DEMs on two drainage basins in Turkey, Envirnmental Earth Sciences, 78:574

Karaca, M., A, Deniz., ve M. Tayanç. 2000. Cyclone Track Variability over Turkey in Association with Regional Climate, Int. J. of Climatology., 20, 1225-1236.

Kay, A.L., Jones, R.G., Reynard, N.S. 2006. RCM rainfall for UK flood frequency estimation. II. Climate change results. J Hydrol 318:163–172. https://doi.org/10.1016/j.jhydrol.2005.06.013

Keskin, F. 2012. Quantitative Flood Risk Assessment With Applicaton In Turkey. Yayımlanmamış Doktora Tezi, Ortadoğu Teknik Üniversitesi Fen Bilimleri Enstitüsü, Jeodezi ve CBS Teknolojileri ABD. Ankara

Kidson, R., Richards, K.S., Carling, P.A. 2005. Reconstructing the ca. 100-year flood in Northern Thailand. Geomorphology 70:279–295. https://doi.org/10.1016/j.geomorph.2005.02.009

Koçman, A. 1993. Türkiye İklimi, Ege Ünv. Edebiyat Fakültesi Yayınları, No: 72, İzmir.

Llasat, M.C., Barriendos, M., Barrera, A., Rigo, T. 2005. Floods in Catalonia (NE Spain) since the 14th century. Climatological and meteorological aspects from historical documentary sources and old instrumental records. J Hydrol 313:32–47. https://doi.org/10.1016/j.jhydrol.2005.02.004

Marks, K., Bates, P. 2000. Integration of high‐resolution topographic data with floodplain flow models. Hydrol Process 14:2109–2122. https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2109::aid-hyp58>3.3.co;2-t

Md. Ali. A., Di Baldassarre, G., Solomatine, D.P. 2015a. Testing different cross-section spacing in 1D hydraulic modelling: a case study on Johor River, Malaysia. Hydrol Sci J 60:351–360. https://doi.org/10.1080/02626667.2014.889297

Md. Ali. A., Solomatine, DP., Di Baldassarre, G. 2015b. Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods. Hydrol Earth Syst Sci 19:631–643. https://doi.org/10.5194/hess-19-631-2015

Merz, R., Blöschl, G. 2005. Flood frequency regionalisation - Spatial proximity vs. catchment attributes. J Hydrol 302:283–306. https://doi.org/10.1016/j.jhydrol.2004.07.018

Nguyen, P., Andrea, T., Soroosh, S., Hsu, K., AghaKuchak, A., Sanders, B., Koren, V., Cui, Z., Smith, M. 2015. A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling. Journal of Hydrology, Vol(541):401-420.

Noman, N., Nelson, E., Zundel, A. 2001. Review of Automated Floodplain Delineation From Digital Terrain Models. J Water Resour Plan Manag - J WATER RESOUR PLAN MAN-ASCE 127:. https://doi.org/10.1061/(ASCE)0733-9496(2001)127:6(394)

Norbiato, D., Borga, M., Sangati, M., Zanon, F. 2007. Regional frequency analysis of extreme precipitation in the eastern Italian Alps and the August 29, 2003 flash flood. J Hydrol 345:149–166. https://doi.org/10.1016/j.jhydrol.2007.07.009

Orman ve Su İşeri Bakanlığı Su Yönetimi Genel Müdürlüğü. 2016. Antalya Havzası Taşkın Yönetim Planı” Temelsu Uluslararası Mühendislik Hizmetleri AŞ.

Onuşluel Gül, G. 2013. Estimating flood exposure potentials in Turkish catchments through index-based flood mapping. Nat Hazards 69:403–423. https://doi.org/10.1007/s11069-013-0717-8

Özcan, E. 2006. Sel Olayı ve Türkiye. Gazi Üniversitesi Gazi Eğitim Fakültesi Derg 26:35–50. https://doi.org/10.17152/gefd.15296.

Özcan, O. 2017. Taşkın tespitinin farklı yöntemlerle değerlendirilmesi: Ayamama Deresi Örneği. Artvin Çoruh Üniversitesi Doğal Afetler Uygulama ve Araştırma Merkezi, Doğal Afetler ve Çevre Dergisi, (3) 1, 9-27.

Özcan, O., Musaoğlu, N. 2009. Taşkın risk analizinde hidrolojik modelleme ve çok kriterli karar verme yöntemi" TUFUAB V. Teknik Sempozyumu, Ankara.

Ozdemir, H. 2011. Havza morfometrisi ve taşkınlar, Fiziki Coğrafya Araştırmaları: Sistematik ve Bölgesel, Ekinci D., Ed., Babil, İstanbul, ss. 507-526.

Özdemir, H. 2008. Havran Çayı ’ nın ( Balıkesir ) Taşkın Sıklık Analizinde Gumbel ve Log Pearson Tip III Dağılımlarının Karşılaştırılması Comparison of Gumbel and Log Pearson type III distributions in flood frequency analysis of Havran river ( Balıkesir ). 6:41–52.

Öztürk, M.Z., Çetinkaya, G., Aydın, S. 2017. Köppen-Geiger İklim Sınıflandırmasına Göre Türkiye’nin İklim Tipleri. Coğrafya Derg 17–27.

Peel, M.C., Finlayson, B.L., McMahon. T.A. 2007. Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11:1633–1644.

Petrow, T., Merz., B. 2009. Trends in flood magnitude, frequency and seasonality in Germany in the period 1951-2002. J Hydrol 371:129–141. https://doi.org/10.1016/j.jhydrol.2009.03.024

Rahman, A., Weinmann. P.E., Hoang, T.M.T., Laurenson, E.M. 2002. Monte Carlo simulation of flood frequency curves from rainfall. J Hydrol 256:196–210. https://doi.org/10.1016/S0022-1694(01)00533-9

Ranke, U. 2016. Natural Disaster Risk Management Geosciences and Social Responsibility. Switzerland: Springer International Publishing.

Saf, B. (2011). Batı Akdeniz Bölgesi Taşkın Tahminlerinde Homojenlik İrdelemesi.İMO Teknik Dergi 5587–5611

Samela, C., Manfreda, S., Paola, F. D., Giugni, M., Sole, A., & Fiorentino, M. 2016. DEM-Based Approaches for the Delineation of Flood-Prone Areas in an Ungauged Basin in Africa. Journal of Hydrologic Engineering, 21(2), 06015010. doi:10.1061/(asce)he.1943-5584.0001272

Sanders, B.F. 2007. Evaluation of on-line DEMs for flood inundation modeling. Adv Water Resour 30:1831–1843. https://doi.org/10.1016/J.ADVWATRES.2007.02.005

Santillan, J.R., Makinano-Santillan, M. 2016. Vertical accuracy assessment of 30-M resolution ALOS, ASTER, and SRTM global DEMS over Northeastern Mindanao, Philippines. Int Arch Photogramm Remote Sens Spat Inf Sci - ISPRS Arch 41:149– 156. https://doi.org/10.5194/isprsarchives-XLI-B4-149-2016

Schumann, G., Matgen, P., Hoffmann, L., vd. 2007. Deriving distributed roughness values from satellite radar data for flood inundation modelling. J Hydrol 344:96–111. https://doi.org/10.1016/j.jhydrol.2007.06.024

Saral, A., Musaoğlu, N. 2011. Çok kriterli karar verme ve bilgi difüzyonu yöntemleri ile taşkın risk analizi TMMOB Harita ve Kadastro Mühendisleri Odası 13. Türkiye Harita Bilimsel ve Teknik Kurultayı, 18-22 Nisan, Ankara.

Şenol Balaban, M. 2016. An assessment of flood risk factors in riverine cities of Turkey: Lessons for resilience and urban planning. Metu J Fac Archit 33:45–71. https://doi.org/10.4305/METU.JFA.2016.2.3

Şensoy, H., Palta, Ş. 2009. Yamaç şekillerinin toprak erozyonuna etkileri. Bartın Orman Fakültesi Dergisi 11:95–98

Sharif, H.O., Hassan, A.A., Bin-Shafique, S., vd., 2010. Hydrologic Modeling of an extreme flood in the guadalupe river in Texas. J Am Water Resour Assoc 46:881–891. https://doi.org/10.1111/j.1752-1688.2010.00459.x

Sheffer, N.A., Rico, M., Enzel, Y., vd. 2008. The Palaeoflood record of the Gardon River, France: A comparison with the extreme 2002 flood event. Geomorphology 98:71–83. https://doi.org/10.1016/j.geomorph.2007.02.034

Şimşek, M., Utlu, M., Poyraz, M., Öztürk, M.Z. 2019. Geyik dağı kütlesinin yüzey karstı jeomorfolojisi ve kütle üzerindeki karst-buzul jeomorfolojisi ilişkisi. Ege Coğrafya Dergisi, 28(2) 97-110.

Tadono, T., Nagai, H., Ishida, H., vd. 2016. Generation of the 30 M-MESH global digital surface model by alos prism. Int Arch Photogramm Remote Sens Spat Inf Sci - ISPRS Arch 41:157–162. https://doi.org/10.5194/isprsarchives-XLI-B4-157-2016

Taş, M., Taş, N., Durak, S., Atanur, G. 2013. Flood disaster vulnerability in informal settlements in Bursa, Turkey. Environ Urban 25:443–463. https://doi.org/10.1177/0956247813501134

Tate, E.C. 1999. Floodplain mapping using HEC-RAS and ArcView GIS. Tech Rep - Univ Texas Austin, Cent Res Water Resour.

Thorndycraft, V.R., Benito, G., Rico, M., vd. 2005. A long-term flood discharge record derived from slackwater flood deposits of the Llobregat River, NE Spain. J Hydrol 313:16–31. https://doi.org/10.1016/j.jhydrol.2005.02.003

Treby, E.J., Clark, M.J., Priest, S.J. 2006. Confronting flood risk: Implications for insurance and risk transfer. J Environ Manage 81:351–359. https://doi.org/10.1016/j.jenvman.2005.11.010

Tokgözlü, A., Özkan, E. 2018. Taşkın risk haritalarında ahp yönteminin uygulanması: Aksu Çayı Havzası Örneği SDÜ Fen Edebiyat Fakültesi Sosyal Bilimler Dergisi, 44, 151-176.

Turoğlu, H., Özdemir, H. 2005. Bartın’da Sel ve Taşkınlar (Sebepler, Etkiler, Önleme ve Zarar Azaltma Önerileri). İstanbul: Çantay Kitabevi.

Türkeş, M., Tatlı, H., 2011. “Türkiye yağış bölgelerinin spektral kümeleme tekniğiyle belirlenmesi. In: Proceedings of the National Geographical Congress with International Participation (CD-R),” ISBN 978-975-6686-04-1, Türk Coğrafya Kurumu: İstanbul.

Uludağ, A.S., Doğan., H. 2016. Çok kriterli karar verme yöntemlerinin karşılaştırılmasına odaklı bir hizmet kalitesi uygulaması. Çankırı Karatekin Üniversitesi, İktisadi ve İdari Bilimler Fakülte Dergisi, (6) 2, 17-47.

U.S. Army Corps of Engineers. 2016. HEC-RAS River Analysis System 2D Modeling User’s Manual. Version 5.0.” Hydrologic Engineering Center. Davis, California. p. 171.

Utlu, M., Özdemir, H. (2018). The Role of Basin Morphometric Features in Flood Output: A Case Study of the Biga River Basin. J Geog 36:49–62. https://doi.org/10.26650/JGEOG408101

Van der Sande, C.J., de Jong, S.M., de Roo A.P.J. 2003. A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. Int J Appl Earth Obs Geoinf 4:217–229. https://doi.org/10.1016/S0303-2434(03)00003-5

Vinet, F. 2008. Geographical analysis of damage due to flash floods in southern France: The cases of 12-13 November 1999 and 8-9 September 2002. Appl Geogr 28:323–336. https://doi.org/10.1016/j.apgeog.2008.02.007

Yamazaki, D., Ikeshima., D., Tawatari, R., vd. 2017. A high-accuracy map of global terrain elevations. Geophys Res Lett 44:5844–5853. https://doi.org/10.1002/2017GL072874

Yılmaz, İ., Öztürk, D., Kırbaş, U. 2017. "Çorum ili taşkın tehlikesinin analitik hiyerarşi yöntemi kullanılarak incelenmesi" TMMOB Harita ve Kadastro Mühendisleri Odası, 16. Türkiye Harita Bilimsel ve Teknik Kurultayı, 3-6 Mayıs. Ankara.

Yucel, I., Keskin, F. 2011. Assessment of flash flood events using remote sensing and atmospheric model-derived precipitation in a hydrological model. IAHS-AISH Publ 344:245–251

Zhou, Y., Ma, Z., Wang, L. 2002. Chaotic dynamics of the flood series in the Huaihe River Basin for the last 500 years. J Hydrol 258:100–110. https://doi.org/10.1016/S0022-1694(01)00561-3

Kaynak Göster

Bibtex @araştırma makalesi { ecd775152, journal = {Ege Coğrafya Dergisi}, issn = {}, eissn = {2636-8056}, address = {}, publisher = {Ege Üniversitesi}, year = {2020}, volume = {29}, pages = {161 - 177}, doi = {}, title = {1D TAŞKIN MODELLEMELERİ AÇISINDAN TOPO DEM VE ALOS DSM VERİLERİNİN KARŞILAŞTIRILMASI: ALARA ÇAYI ÖRNEĞİ}, key = {cite}, author = {Utlu, Mustafa and Şimşek, Mesut and Öztürk, Muhammed Zeynel} }
APA Utlu, M , Şimşek, M , Öztürk, M . (2020). 1D TAŞKIN MODELLEMELERİ AÇISINDAN TOPO DEM VE ALOS DSM VERİLERİNİN KARŞILAŞTIRILMASI: ALARA ÇAYI ÖRNEĞİ . Ege Coğrafya Dergisi , 29 (2) , 161-177 .
MLA Utlu, M , Şimşek, M , Öztürk, M . "1D TAŞKIN MODELLEMELERİ AÇISINDAN TOPO DEM VE ALOS DSM VERİLERİNİN KARŞILAŞTIRILMASI: ALARA ÇAYI ÖRNEĞİ" . Ege Coğrafya Dergisi 29 (2020 ): 161-177 <
Chicago Utlu, M , Şimşek, M , Öztürk, M . "1D TAŞKIN MODELLEMELERİ AÇISINDAN TOPO DEM VE ALOS DSM VERİLERİNİN KARŞILAŞTIRILMASI: ALARA ÇAYI ÖRNEĞİ". Ege Coğrafya Dergisi 29 (2020 ): 161-177
RIS TY - JOUR T1 - 1D TAŞKIN MODELLEMELERİ AÇISINDAN TOPO DEM VE ALOS DSM VERİLERİNİN KARŞILAŞTIRILMASI: ALARA ÇAYI ÖRNEĞİ AU - Mustafa Utlu , Mesut Şimşek , Muhammed Zeynel Öztürk Y1 - 2020 PY - 2020 N1 - DO - T2 - Ege Coğrafya Dergisi JF - Journal JO - JOR SP - 161 EP - 177 VL - 29 IS - 2 SN - -2636-8056 M3 - UR - Y2 - 2020 ER -
EndNote %0 Ege Coğrafya Dergisi 1D TAŞKIN MODELLEMELERİ AÇISINDAN TOPO DEM VE ALOS DSM VERİLERİNİN KARŞILAŞTIRILMASI: ALARA ÇAYI ÖRNEĞİ %A Mustafa Utlu , Mesut Şimşek , Muhammed Zeynel Öztürk %T 1D TAŞKIN MODELLEMELERİ AÇISINDAN TOPO DEM VE ALOS DSM VERİLERİNİN KARŞILAŞTIRILMASI: ALARA ÇAYI ÖRNEĞİ %D 2020 %J Ege Coğrafya Dergisi %P -2636-8056 %V 29 %N 2 %R %U
ISNAD Utlu, Mustafa , Şimşek, Mesut , Öztürk, Muhammed Zeynel . "1D TAŞKIN MODELLEMELERİ AÇISINDAN TOPO DEM VE ALOS DSM VERİLERİNİN KARŞILAŞTIRILMASI: ALARA ÇAYI ÖRNEĞİ". Ege Coğrafya Dergisi 29 / 2 (Aralık 2020): 161-177 .
AMA Utlu M , Şimşek M , Öztürk M . 1D TAŞKIN MODELLEMELERİ AÇISINDAN TOPO DEM VE ALOS DSM VERİLERİNİN KARŞILAŞTIRILMASI: ALARA ÇAYI ÖRNEĞİ. ECD. 2020; 29(2): 161-177.
Vancouver Utlu M , Şimşek M , Öztürk M . 1D TAŞKIN MODELLEMELERİ AÇISINDAN TOPO DEM VE ALOS DSM VERİLERİNİN KARŞILAŞTIRILMASI: ALARA ÇAYI ÖRNEĞİ. Ege Coğrafya Dergisi. 2020; 29(2): 161-177.
IEEE M. Utlu , M. Şimşek ve M. Öztürk , "1D TAŞKIN MODELLEMELERİ AÇISINDAN TOPO DEM VE ALOS DSM VERİLERİNİN KARŞILAŞTIRILMASI: ALARA ÇAYI ÖRNEĞİ", Ege Coğrafya Dergisi, c. 29, sayı. 2, ss. 161-177, Ara. 2021