Termokromik Malzemelerin Kaplama Malzemesi Olarak Karakterizasyonu

Binaya giren güneş enerjisi miktarını kontrol etmek, binaların enerji ihtiyaçlarını azaltmak küresel ısınmaya karşı mücadele etmede alınabilecek önlemlerdir. Bu amaçla, pencereler enerji tasarrufu üzerinde etkili olan özel ince film ile kaplanmıştır. Seralar, güneşten koruyucular,   konutlar, ofisler ve otomobillerin ön camları da dahil olmak üzere akıllı kaplamaların çok fazla uygulama alanı vardır. Bu gibi kaplamaların geliştirilmesi, çevresel faydalar sağlayarak enerji maliyetlerinde önemli tasarruf sağlar [1]. Araştırmalar yeni nesil malzemelerin geliştirilmesine yol açmıştır. Malzeme teknolojisindeki gelişmeler, "akıllı malzeme" teriminin sıcaklık, ışık gibi bazı koşullara istenen yanıtı vermesine neden olan ek işlevler kazanmıştır. Değişen sıcaklığa bağlı optik özellikleri değiştirerek ışık ve ısı enerjisini kontrol eden yeni nesil termokromik akıllı camları üretme konusunda gelişme vardır. Bu çalışmada, özellikle inşaat sektöründe kullanılan dışa bağımlılığı azaltacak, uluslararası düzeyde rekabet edebilirliği artıran ve enerji verimliliğini destekleyecek uygulamalar için yenilikçi kaplama malzemeleri geliştirilmesi amaçlanmaktadır. 33°C’de yeşil, 45°C’de siyah ve 65°C’de mavi renk değiştiren termokromik pigmentlerin tane boyutu ölçülmüş ve TG / DTA analizleri gerçekleştirilmiştir. Pigmentler USB dijital mikroskop ile incelenmiştir ve renk ölçümleri spektrofotometre kullanılarak yapılmıştır. Termokromik pigmentlerin artan ve azalan sıcaklık ile renk değişimi infrared termometre ile incelenmiştir. Karakterizasyon çalışmaları X-ışını kırınım analizi ve taramalı elektron mikroskobu analiz teknikleri ile gerçekleştirilmiştir. 

Termokromik Malzemelerin Kaplama Malzemesi Olarak Karakterizasyonu

Controlling the amount of solar energy entering the building, reducing the energy needs of buildings is a measure that can be taken to combat global warming. For this purpose, the windows are covered with special thin film which is effective on energy conservation. There are a lot of application for intelligent coatings, including greenhouses, sun protectors, housing, offices and automobile windshields. The development of such coatings provides environmental benefits leading to considerable savings in energy costs [1]. Researches have led to the development of new generation materials. Developments in materials technology gained extra functions that cause the term "intelligent material" to give the desired response to some conditions such as temperature, light, etc. Improving on produce a new generation of thermochromic intelligent glasses that control the light and heat energy by changing the optical properties depending on the changing temperature. In this study, it is aimed to develop innovative coating materials for applications which will reduce external dependence on glass used especially in the construction sector, increase competitiveness at international level and support energy efficiency. The grain size of the thermochromic pigments, which change color at 33°C green, black at 45°C, and blue at 65°C, were measured and TG/DTA analyzes were carried out. Pigments were examined with USB digital microscope and color measurements were made using spectrophotometer. The color change of thermochromic pigments with increasing and decreasing temperature was examined by infrared thermometer. Characterization studies were carried out by X-ray diffraction analysis and scanning electron microscopy analysis techniques. 

___

  • [1] M. Kamalisarvestani, R. Saidur, S. Mekhilef, F. Javadi, "Performance, materials and coating technologies of thermochromic thin films on smart windows," Renewable and Sustainable Energy Reviews, vol. 26, pp. 353-364, 2013.
  • [2] C. S. Blackman, C. Piccirillo, R. Binions, I.P. Parkin, "Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing," Thin Solid Films, vol. 517, pp. 4565-4570, 2009.
  • [3] Y. Ma, X. Zhang, B. Zhu, K. Wu, "Research on reversible effects and mechanism between the energy-absorbing and energy-reflecting states of chameleon-type building coatings," Solar Energy, vol. 72, pp. 511-520, 2002.
  • [4] Y. Ma, B. Zhu, K. Wu, "Preparation and solar reflectance spectra of chameleon-type building coatings," Solar energy, 70, pp. 417-422, 2001. [5] A. D. McNaught, A. D. McNaught, Compendium of chemical terminology, Oxford, England:Blackwell Science, 1997.
  • [6] T. Chang, X. Cao, L.R. Dedon, S. Long, A. Huang, Z. Shao, N. Li, H. Luo, P. Jin, "Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings," Nano Energy, vol. 44, pp. 256-264, 2018.
  • [7] A. Paone, M. Geiger, R. Sanjines, A. Schüler, "Thermal solar collector with VO2 absorber coating and V1-xWxO2 thermochromic glazing-Temperature matching and triggering," Solar Energy, vol. 110, pp. 151-159, 2014.
  • [8] W. Li, S. Ji, K. Qian, P. Jin, "Preparation and characterization of VO2–BaSO4 composite films with enhanced optical properties in thermochromic field," Ceramics International, vol. 41, pp. 5049-5056, 2015.
  • [9] A. Paone, R. Sanjines, P. Jeanneret, A. Schüler, "Temperature-dependent multiangle FTIR NIR–MIR ellipsometry of thermochromic VO2 and V1− xWxO2 films," Solar Energy, vol. 118, pp. 107-116, 2015.
  • [10] L. Long, H. Ye, H. Zhang, Y. Gao, "Performance demonstration and simulation of thermochromic double glazing in building applications," Solar Energy, vol. 120, pp. 55-64, 2015.
  • [11] G. T. Pan, Y. L. Yang, S. Chong, N. Arjun, T. C. K. Yang, Y C. Lai, "The durability study of thermochromic vanadium dioxide films with the addition of barrier coatings," Vacuum, vol. 145, 158-168, 2017.
  • [12] S.-E. Chen, H.-H. Lu, S. Brahma, J.-L. Huang, "Effects of annealing on thermochromic properties of W-doped vana dium dioxide thin films deposited by electron beam evaporation," Thin Solid Films, vol. 644, pp. 52-56, 2017. [13] S. Kumar, F. Maury, N. Bahlawane, "Tunable thermochromic properties of V2O5 coatings," Materials Today Physics, vol. 2, pp. 1-5, 2017. [14] X. Yu, J. Hu, "Thermochromic coatings, films and materials for thermal management," USA. Patent Application no. 15/094, 135.
  • [15] L. Hu, H. Tao, G. Chen, R. Pan, M. Wan, D. Xiong, X. Zhao, "Porous W-doped VO2 films with simultaneously enhanced visible transparency and thermochromic properties," Journal of Sol-Gel Science and Technology, vol. 77, pp. 85-93, 2016.
  • [16] Y. Y. Chen, W. C. J. Wei, "Formation of mullite thin film via a sol-gel process with polyvinylpyrrolidone additive," Journal of the European Ceramic Society, vol. 21, pp. 2535-2540, 2001.
  • [17] H. Kozuka, M. Kajimura, T. Hirano, K. Katayama, "Crack-free, thick ceramic coating films via non-repetitive dip-coating using polyvinylpyrrolidone as stress-relaxing agent," Journal of Sol-Gel Science and Technology, vol. 19, pp. 205-209, 2000.
  • [18] D. Aitken, S. Burkinshaw, J. Griffiths, A. Towns, "Textile applications of thermochromic systems," Coloration Technology, vol. 26, pp. 1-8, 1996.
  • [19] D. C. MacLaren, M. A. White, "Dye–developer interactions in the crystal violet lactone–lauryl gallate binary system: implications for thermochromism," Journal of Materials Chemistry, vol. 13, pp. 1695-1700, 2003.
  • [20] G. D. White, D. A. Zartman, J. M. Bonicamp, "A serious look at changeable silly putty," The Chemical Educator, vol. 5, pp. 2-7, 2000.
  • [21] M. A. White, M. LeBlanc, "Thermochromism in commercial products," J. Chem. Educ, vol. 76, pp. 1201, 1999.
  • [22] D. Li, Y. Shan, F. Huang, S. Ding, "Sol–gel preparation and characterization of SiO2 coated VO2 films with enhanced transmittance and high thermochromic performance," Applied Surface Science, vol. 317, pp. 160-166, 2014.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü