Nokta Direnç Kaynak Elektrotlarına TiC-Co Kaplamanın Etkisi

Nokta direnç kaynak yöntemi otomotiv endüstrisinde yaygın olarak kullanılmaktadır. Diğer kaynak yöntemlerine göre oldukça hızlı, ekonomik, güvenilir bir yöntemdir. Kaynak işlemi sırasında elektrotların iş parçalarına temas eden yüzeyinde lokal olarak yüksek sıcaklıklara çıkılmaktadır ve kaynak çevrimi boyunca da elektrotlar iş parçalarına belli bir basınç uygularlar. Basınç ve sıcaklık elektrot yüzeyinde deformasyon oluşturur. Nokta direnç kaynağında kullanılan Cu-Cr-Zr elektrotların ömürlerini uzatmak için kaplama işlemi uygulanmaktadır. Bu çalışmada, elektrotların uç yüzeylerine TiC-Co malzeme elektrospark yöntemiyle farklı kaplama parametrelerinde kaplanmış, böylece kaplamanın DP600 çelik saç çifti birleştirmesi özelliklerine etkisi araştırılmıştır.

Effect of TiC-Co Coating on the Resistance Spot Welding Electrodes

Resistance spot welding method is widely used in the automotive industry. It is a fast, economical and reliable method as compared to other welding methods. During the welding process, locally high temperatures are exited at the surface of the electrodes that contact to the work piece, and the electrodes apply a certain pressure to the workpieces during the welding cycle. Pressure and temperature create deformation at the electrode surface. Coating is applied to extend the lifetime of the Cu-Cr-Zr electrodes which were used in the resistance spot welding. In this study, the TiC-Co material was coated on the end surfaces of the electrodes by electrospark method in different coating parameters, so the effect of the coating on DP600 steel sheet joining properties was investigated.

___

  • K.W. Andrew, “Empirical Formulae for the Calculation of Some Transformation Temperatures,” Journal of the Iron and Steel Institute, vol. 203, pp. 721-727, 1965.
  • M. Pouranvari, S.P.H. Marashi, “Key Factors Influencing Mechanical Performance of Dual Phase Steel Resistance Spot Welds,” Science Technology Weld. Join, vol. 15, pp. 149-155, 2015.
  • S.T. Wei, D. Lv, R.D. L. Liu, L. Lin, R.J. Xu, J.Y. Guo, K.Q. Wang, “Similar and Dissimilar Resistance Spot Welding of Advanced High Strength Steels: Welding and Heat Treatment Procedures, Structure and Mechanical Properties,” Science Technology Weld Join, vol. 19, pp. 427-435, 2014.
  • B.V. Hernandez, M. Kuntz, M. Khan, Y. Zhou, “Influence of Microstructure and Weld Size on The Mechanical Behaviour of Dissimilar AHSS Resistance Spot Welds,” Sci Technol Weld Joint, vol. 13, pp. 769–776, 2008.
  • H. Ertek Emre, R. Kaçar, “Development of Weld Lobe for Resistance Spot-Welded TRIP800 Steel and Evaluation of Fracture Mode of its Weldment,” Int. J. Adv. Manufactoring. Technology, vol. 83, pp. 1737-1747, 2016.
  • S.S. Babu, M.L. Santella, W. Peterson, “Modeling Resistance Spot Welding Electrode Life,” Oak Ridge National Laboratory, 2000.
  • S.S. Babu, M.L. Santella, W. Peterson, “Modeling Resistance Spot Welding Electrode Life,” Oak Ridge National Laboratory, 2000.
  • W.H. Kearns, “Welding Handbook: Resistance and Solid-State Welding and Other Joining Processes,” AWS 7th Edition, vol. 3., 1982.
  • C. Biselli, D.G. Morris, N. Randall, “Mechanical Alloying of High-Strength Copper Alloys Containing TiB2 and Al2O3 Dispersoid Particles,” Scripta Metallurgica et Materials, vol. 30, no. 10, pp. 1327-1332, 1994.
  • S.J. Dong, Y. Zhou, Y. W. Shi, “Formation of a Tib2-Reinforced Copper-Based Composite By Mechanical Alloying and Hot Pressing,” Metallurgical and Materials Transactions A, vol. 33, no. 4, pp. 1275-1280, 2002.
  • S.J. Dong, N. Zhou, C. Cheng Y.W. Shi, B. Chang, “Single-Step Fabrication of HighThroughput Surface-Enhanced Raman Scattering Substrates,” Trans. Non. Ferrous Met. Soc, vol. 15, no. 6, pp. 1219-1225, 2005.
  • B. Bozkurt, H. Ertek Emre, Ş. Talaş, R. Kacar, “Nokta Direnç Kaynak Elektrotuna TiC-Co Kaplamanın Etkisi,” 2 nd International Conference on Engineering Technology and Applied Sciences, Cluj Napoca Technical University, Romania, 2017.
  • J. Zou, Q. Zhao, Z. Chen, “Surface Modified Long-Life Electrode for Resistance Spot Welding of Zn-Coated Steel,” Journal of Materials Processing Technology, vol. 209, pp. 4141-4146, 2009.
  • Z. Chen, Y. Zhou, “Surface Modification of Resistance Welding Electrode By Electro-Spark Deposited Composite Coatings: Part I. Coating Characterization,” Surface Coating Technology, vol. 201, pp. 1503-1510, 2006.
  • Z. Chen, Y. Zhou, “Surface Modification of Resistance Welding Electrodes By Electro-Spark Deposited Composite Coatings: Part II. Metallurgical Behavior During Welding,” Surface Coating Technology, vol. 201, pp. 2419-2430, 2006.
  • S.J. Dong, Y. Zhou, “Effects of TiC Composite Coating on Electrode Degradation in Microresistance Welding of Nickel-Plated Steel,” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science A, vol. 34A, pp. 1501-1511, 2003.
  • J. Gould, “Application of Electro-Spark Deposition as a Joining Technology,” Welding Journal, vol. 90, pp. 191-197, 2011.
  • D. Liu, W. Gao, Z. Li, H. Zhang, Z. Hu, “Electro-Spark Deposition of Fe-Based Amorphous Alloy Coatings,” Materials Letters, vol. 61, pp. 165-167, 2007.
  • Y.D. He, H. Pang, H.B. Qi, D.R. Wang, Z.W. Li, W. Gao, “Micro-Crystalline Fe–Cr–Ni–Al– Y2O3 ODS Alloy Coatings Produced By High Frequency Electric-Spark Deposition,” Materials Science and Engineering: A, vol. 334, pp. 179-186, 2002.
  • W. Gao, Z. Li, Y. He, “High Temperature Oxidation Resistant Coatings Produced By ElectroSpark Deposition,” Material Science Forum, 2001 369–372.
  • J. L. Reynolds, R. L Holdren, L. E. Brown, “Electro-Spark Deposition,” Advanced Materials and Processes, vol. 161, pp. 35-37, 2003.
  • R. N. Johnson, G. L. Sheldon, “Advances in the Electrospark Deposition Coating Process,” Journal of Vacuum Science & Technology A, vol. 14, 2740-2746, 1986.
  • J. D. Parker, N. T. Williams, R. J. Holliday, “Mechanisms of Electrode Degradation When Spot Welding Coated Steels,” Science and Technology of Welding and Joining, vol. 3, pp. 65–74, 1998.
  • H. Kusano, “Sheet Metal Welding Code,” XIV.AWS Detroit Sections Steel Metal Welding Conference, Linovia, 2010, pp. 29-32.
  • P. Podržaj, B. Jerman, S. Simončič, “Poor Fit-Up Condition in Resistance Spot Welding,” Journal of materials processing technology, vol. 230, pp. 21-25, 2016.
  • A. Chabok, A. E. Van der, J. T. M. De Hossonc, Y. T. Pei, “Mechanical Behavior and Failure Mechanism of Resistance Spot Welded DP1000 Dual Phase Steel,” Materials and Design, vol. 124, pp. 171–182, 2017.
  • T. Satoh, H. Abe, T. Nakaoka, Y. Hayata, “Peel And Shear Strength of Spot-Welded And Weld-Bonded Dissimilar Thickness Joints”, Welding in the World, vol. 37, no. L, pp. 12-15, 1996.
  • H. K. Zeytin, H. Ertek Emre, R.Kaçar, “The Role Of Lamination Conditions on Electro Chemical and Mechanical Performance of Ceramic Electrolytes for Solid Oxide Fuel Cells,” Metals, vol. 7, no. 14, pp. 1-13, 2017.
  • E. Bayraktar, D. Kaplan, C. Buirette, M. Grumbach, “Application of İmpact Tensile Testing to Welded Thin Sheets,” Journal of Material Processing Technology, vol. 145, no. 1, pp. 27-39, 2004.
  • Z. Xiaoyun, C. Guanlong, Z. Yansong, L. Xinmin, “Improvement of Resistance Spot Weldability For Dual-Phase (DP600) Steels Using Servo Gun,” Journal of materials processing technology, vol. 209, pp. 2671-2675, 2009.
  • A. Arumugam, M. Nor, Spot, “Spot Welding Parameter Optimization to İmprove Weld Characteristics for Dissimilar Metals,” International Journal of Scientific and Technology Research, vol. 4 no. 1, pp. 75-80, 2015.
  • X. Zhang, G. Chen, Y. Zhang, X. Lai, “Improvement of Resistance Spot Weldability For DualPhase (DP600) Steels Using Servo Gun,” Journal of Materials Processing Technology, vol. 209, pp. 2671-2675, 2009.
  • X. Wan, Y. Wang, P. Zhang, “Modelling The Effect Of Welding Current On Resistance Spot Welding Of DP600 Steel,” Journal of Materials Processing Technology, vol. 214, pp. 2723-2729, 2014.
  • X. Yuan, C. Li, J. Chen, X. Li, X. Liang, X. Pan, “Resistance Spot Welding of Dissimilar DP600 And DC54D Steels,” Journal of Materials Processing Technology, vol. 239, pp. 31-41, 2017.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü