Partikül Boyutunun Argon Atmosferi Altında Sinterlenen 316L İçi Boş Fiber Membranların Yapısına ve Özelliklerine Tane Etkisi

316L paslanmaz çelikler içi boş fiber membranlar, polimer ve seramik esaslı membranlara alternatif olarak kullanılmaktadır. 316L içi boş fiber membranların kullanım alanları kimya ve atık arıtma endüstrilerinde gaz ve sıvı ayrıştırmaları için destek ve partikül filtreleri gibi uygulamalardır. Birçok metod arasında, üretim tekniği olarak en popüler olan kuru-ıslak eğirme tekniği seçilmiştir. Çalışmanın amacı farklı toz partikül boyutlarında (kaba, ince ve bunların karışımı) içi boş fiber membranların üretilmesi ve bunların yapıları ve kimyasal kompozisyon, gözenek miktarı, ortalama gözenek boyutu ve gözenek dağılımlarını incelemektir. Aynı zamanda, mekanik özellikleri belirlemek amacıyla 3-nokta eğme testleri uygulanmıştır. İnce partiküllerden üretilen numuneler kaba partikül boyutlu numunelerden daha yüksek yoğunlaşma göstermektedir. Gözenek yapısına bakıldığında, karışım partikül boyutu ince partikül boyutuna kıyasla daha düşük gözeneklilik ve gözenek boyutu sunmaktadır. Öte yandan, en küçük partikül boyutu en yüksek mukavemet ve eğilme miktarı sunmaktadır.

Influence of Particle Size on the Structure and Properties of 316L Hollow Fiber Membranes Sintered Under Argon Atmosphere

316L based stainless steel hollow fiber membranes (HFs) are used as an alternative for polymer and ceramic based membranes. Application areas of 316L hollow fiber membranes are applications such as support or particle filter of gas and liquid separations in chemical and waste treatment industries. Among various methods, dry-wet spinning technique was selected as the production method of hollow fiber membranes since it is the most popular one. The aim of the study is to produce hollow fiber membranes in different powder particle sizes (coarse, fine, and their mixture), and to examine their structure and also their properties such as chemical compositions, pore amount, average pore size, and pore distribution. 3-point bending tests were also used to determine their mechanical properties. HFs produced from fine particles show higher densification than coarse particle size samples. In terms of pore structure, mixed particle size yields lower porosity and pore size than the finest particle size. On the other hand, the finest particle size yields the highest bending strength and bending deflection.

___

  • [1] A. Mustafa, Membran Teknolojileri, T.C. Çevre ve Şehircilik Bakanlığı, 2016.
  • [2] D.R. Schmeda-Lopez, S. Smart, E.H.M. Nunes, D. Vasconcelos, W.L. Vasconcelos, M. Bram, W.A. Meulenberg, J.C.D. da Costa, “Stainless steel hollow fibres: Sintering, morphology and mechanical properties”, Separation and Purification Technology, vol. 147, pp. 379-387, 2015.
  • [3] F.-M. Allioux, O. David, M. E. Benavides, L. Kong, D.A.P. Tanaka, L.F. Dumée, “Preparation of Porous Stainless Steel Hollow-Fibers through Multi-Modal Particle Size Sintering towards Pore Engineering”, Membranes, vol. 7, no. 40, pp. 1-15, 2017.
  • [4] B.F.K. Kingsbury, K.Li, “A morphological study of ceramic hollow fibre membranes”, J. Membr. Sci., vol. 328, pp. 134–140, 2009.
  • [5] J. Li, L. Wang, Y. Hao, et al., “Preparation and characterization of Al2O3 hollow fiber membranes”, J. Membrane Sci., vol. 256, pp. 1-6, 2005.
  • [6] X. Tan, S. Liu, K. Li, “Preparation and characterization of inorganic hollow fiber membranes”, J. Membrane Sci., vol. 188, 87–95, 2001.
  • [7] Dumée, L.F., He, L., Wang, Z., Sheath, P., Xiong, J., Feng, C., Tan, M.Y., She, F., Duke, M., Gray, S. “Growth of nano-textured graphene coatings across highly porous stainless steel supports towards corrosion resistant coatings”. Carbon, vol. 87, pp. 395–408, 2015.
  • [8] A. Cassano, N.K. Rastogi, A. Basile, Advances in Membrane Technologies for Water Treatment, Woodhead Publishing, Oxford, UK, 2015, pp. 551–580.
  • [9] M.W.J. Luiten-Olieman, L. Winnubst, A. Nijmeijer, et al., “Porous stainless steel hollow fiber membranes via dry-wet spinning”, J.Membrane Science, vol. 370, pp. 124–130, 2011.
  • [10] D.R. Schmeda-Lopez, S. Smart, W.A. Meulenberg, J.C. Diniz da Costa, “Mixed matrix carbon stainless steel (MMCSS) hollow fibres for gas separation”, Separation and Purification Technology, vol. 174, pp. 150-158, 2017.
  • [11] W. Rui, C. Zhang, C. Cai, X. Gu, “Effects of sintering atmospheres on properties of stainless steel porous hollow fiber membranes”, Journal of Membrane Science, vol. 489, pp. 90-97, 2015.
  • [12] B. Michielsen, H.Chen, M.Jacobs, et al., “Preparation of porous stainless steel hollow fibers by robotic fiber deposition”, J. Membrane Science, vol. 437, pp. 17–24, 2013.
  • [13] C. Garcia, F. Martin, P. Tiedra and L. G. Cambronero, “Pitting corrosion behaviour of PM austenitic stainless steels sintered in nitrogen–hydrogen atmosphere”, Corrosion Science, vol. 49, pp. 1718– 1736, 2007.
  • [14] P. Samal, J. Pannell, U. Engstrom and O. Mars, “Austenitic stainless steels with enhanced mechanical strength”, Proc. in World PM2010 Conference, European Powder Metallurgy Association (EPMA),Florence, Italy, 2010, pp. 1–8.
  • [15] O. Ertugrul, H.-S. Park, K. Onel and M. Willert-Porada, “Structure and properties of SiC and emery powder reinforced PM 316l matrix composites produced by microwave and conventional sintering”, Powder metallurgy, vol. 58, no.1, pp. 41-50, 2015.
  • [16] E. Klar, P.K. Samal, Powder metallurgy stainless steels: processing, microstructures, and properties, ASM International, Materials Park, OH, 2007.
  • [17] S.S.L. Oliveira, S.S.L. Oliveira, R.S.B. Ferreira, H.L.C. Lira, L.N.L. Santana, E.M. Araújo, “Development of hollow fiber membranes with alumina and waste of quartzite”, Materials Research, vol. 22, no.1, pp. 1-7, 2019.
  • [18] T. Kato, K. Kusaka, “On some properties of sintered stainless steels at elevated temperatures”, Powder Metallurgy, vol. 27, no. 5, pp. 2-8, 1980.
  • [19] M.W.J. Luiten-Olieman, L. Winnubst, A. Nijmeijer, M. Wessling, N.E. Benes, “Porous stainless steel hollow fiber membranes via dry-wet spinning”, Journal of Membrane Science, vol. 370, pp. 124-130, 2011.
  • [20] S. Lopez, D.R. Smart, E.H.M. Nunes, D. Vasconcelos, W.L. Vasconcelos, M. Bram, W.A. Meulenberg, J.C. Diniz da Costa, “Stainless steel hollow fibres - Sintering, morphology and mechanical properties”, Separation and Purification Technology, vol. 147, pp. 379-387, 2015.
  • [21] B. Michielsen, H. Chen, M.Jacobs, “Preparation of porous stainless steel hollow fibers by robotic fiber deposition”, Journal of Membrane Science, vol. 437, pp. 17-24, 2013.