Çinko oksit Nanopartiküllerle İşlem Görmüş Keten, Polyester ve Naylon Kumaşların Ultraviyole Koruma Faktörünün Değerlendirilmesi

Bu çalışmada, nano-çinko oksit ile işlem görmüş keten, polyester ve naylon gibi, yaygın olarak kullanılan giyim kumaşlarının UV koruma özelliklerine etkisi ultraviyole koruma faktörü (UPF) değerlendirmesi ile araştırılmıştır. Keten, polyester ve naylon kumaşların nanopartikül içeriği sırasıyla ağırlıkça %1,2, 0,9 ve 1,5 olarak belirlenmiştir. İşlem görmemiş kumaşların UPF'leri, UV bölgesinde 1,5 ila 2,2 hesaplanmıştır. Nanopartiküllerin kumaşlara daldırılmasından sonra UPF değerinde artış yakalanmıştır. Naylon için UV-B'ye karşı UPF'de yaklaşık altı kat artış (11,02 ± 1,57) bulunmuştur. Keten ve polyester kumaşlar UV-B'ye karşı 2,8 civarında, hemen hemen aynı UPF değerlerine sahipken; UV-A'ya karşı birbirlerine yakın (keten ve polyester için sırasıyla 2,71 ± 0,22 ve 2,61 ± 0,28) UPF değerleri çıkmıştır. SEM mikrografları, nanopartiküllerin keten ve polyester üzerinde yüksek oranda aglomere olduğunu, ancak naylon içinde yer yer aglomerasyonla birlikte genel olarak mikro seviyede partiküler halinde dağıldığını göstermiştir. Anahtar Kelimeler: Çinko oksit nanopartikül, Tekstil kumaşları, Ultraviyole koruma faktörü

Assessment of UV Protection Factor of Flax, Polyester and Nylon Fabrics Treated with Zinc oxide Nanoparticles

In this study, influence of nano-zinc oxide treatment on the UV protection properties of the widely used apparel fabrics including flax, polyester, and nylon, were investigated by means of ultraviolet protection factor (UPF) assessment. Nanoparticle content of the flax, polyester, and nylon fabrics were determined to be 1.2, 0.9, and 1.5 wt%, respectively. The UPFs of non-treated fabrics were in the range of 1.5 to 2.2 in the entire UV region. An improvement in UPF was obtained after introducing the nanoparticles into the fabrics. Approximately a sixfold- increase in UPF (11.02 ± 1.57) against UV-B was recorded for nylon. Flax and polyester fabrics had nearly the same UPF values around 2.8 against UV-B, while they were close to each other (2.71 ± 0.22 and 2.61 ± 0.28 for flax and polyester, respectively) against UV-A. SEM micrographs showed that nanoparticles agglomerated on flax and polyester in high extent, whereas they existed as dispersed particles at micro scale together with some slight agglomeration inside nylon. Keywords: Zinc oxide nanoparticle, Textile fabrics, Ultraviolet protection factor

___

  • R. P. Gallagher and T. K. Lee, “Adverse effects of ultraviolet radiation: A brief review,” Progress in Biophysics and Molecular Biology, vol. 92, no. 1, pp. 119–131, 2006.
  • D. Grifoni, L. Bacci, G. Zipoli, G. Carreras, S. Baronti, and F. Sabatini, “Laboratory and outdoor assessment of UV protection offered by flax and hemp fabrics dyed with natural dyes,” Photochem. Photobiol., vol. 85, no. 1, pp. 313–320, 2009.
  • K. P. Lawrence, T. Douki, R. P. E. Sarkany, S. Acker, B. Herzog, and A. R. Young, “The UV/Visible Radiation Boundary Region (385–405 nm) Damages Skin Cells and Induces ‘dark’ Cyclobutane Pyrimidine Dimers in Human Skin in vivo,” Sci. Rep., vol. 8, no. 1, pp. 1–12, 2018.
  • K. Hoffmann, J. Laperre, A. Avermaete, P. Altmeyer, and T. Gambichler, “Defined UV protection by apparel textiles,” Archives of Dermatology, vol. 137, no. 8, pp. 1089–1094, 2001.
  • P. C. Crews, S. Kachman, and A. G. Beyer, “Influences on UVR transmission of undyed woven fabrics,” Text. Chem. Color., vol. 31, no. 6, pp. 17–26, 1999.
  • A. K. Sarkar, “An evaluation of UV protection imparted by cotton fabrics dyed with natural colorants,” BMC Dermatol., vol. 4, no.15, pp. 1–8 , 2004.
  • A. K. Sarkar, “On the relationship between fabric processing and ultraviolet radiation transmission,” Photodermatol. Photoimmunol. Photomed., vol. 23, no. 5, pp. 191–196, 2007.
  • A. Becheri, M. Dürr, P. Lo Nostro, and P. Baglioni, “Synthesis and characterization of zinc oxide nanoparticles: Application to textiles as UV-absorbers,” J. Nanoparticle Res., vol. 10, no. 4, pp. 679–689, 2008.
  • J. Sawai, “Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay,” J. Microbiol. Methods, vol. 54, no. 2, pp. 177–182, 2003.
  • Y. Q. Li, S. Y. Fu, and Y. W. Mai, “Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency,” Polymer (Guildf)., vol. 47, no. 6, pp. 2127–2132, 2006.
  • A. Fouda, S. EL-Din Hassan, S. S. Salem, and T. I. Shaheen, “In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications,” Microbial Pathogenesis, vol.125, pp. 252–261, 2018.
  • S. Vihodceva and S. Kukle, “Improvement of UV protection properties of the textile from natural fibres by the sol-gel method,” IOP Conf. Ser. Mater. Sci. Eng., Estonia, vol. 49, no. 1, 2013.
  • A. Yadav et al., “Functional finishing in cotton fabrics using zinc oxide nanoparticles,” Bull. Mater. Sci., vol. 29, no. 6, pp. 641–645, 2006.
  • T. I. Shaheen, M. E. El-Naggar, A. M. Abdelgawad, and A. Hebeish, “Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics,” Int. J. Biol. Macromol., vol. 83, pp. 426–432, 2016.
  • T. Textor, “Modification of textile surfaces using the sol-gel technique,” Surface Modification of Textiles, Germany: Elsevier Inc., 2009, ch.9, pp. 185–213.
  • M. Sasani Ghamsari, S. Alamdari, W. Han, and H.-H. Park, “Impact of nanostructured thin ZnO film in ultraviolet protection,” Int. J. Nanomedicine, vol.12, pp. 207–216, 2016.
  • S. N. Nikolaeva , V. V. Ivanov, and A. A. Shubin, “The chemical precipitation and thermal decomposition as the way for producing ultrafine zinc oxide forms” Journal of Siberian Federal University. Chemistry, vol:3, no.2, pp. 153–173, 2010.
  • D. Hanigan et al., “Trade-offs in ecosystem impacts from nanomaterial versus organic chemical ultraviolet filters in sunscreens,” Water Res., vol. 139, pp. 281–290, 2018.
  • J. Pospíšil and S. Nešpurek, “Photostabilization of coatings. Mechanisms and performance,” Progress in Polymer Science, vol. 25, no. 9, pp. 1261–1335, 2000.
  • S. L. Schneider and H. W. Lim, “A review of inorganic UV filters zinc oxide and titanium dioxide,” Photodermatol. Photoimmunol. Photomed., vol. 35, no. 6, pp. 442–446, 2019.
  • Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett., vol. 8, no. 5, pp. 1501–1505, 2008.
  • M. Moroni, D. Borrini, L. Calamai, and L. Dei, “Ceramic nanomaterials from aqueous and 1,2-ethanediol supersaturated solutions at high temperature,” J. Colloid Interface Sci., vol. 286, no. 2, pp. 543–550, 2005.
  • C. Welsh and B. Diffey, “The protection against solar actinic radiation afforded by common clothing fabrics,” Clin. Exp. Dermatol., vol. 6, no. 6, pp. 577–582, 1981.
  • Australian / New Zealand Standard AS: Sun protective clothing — Evaluation and classification, NZS 4399, 1996.
  • P. P. Mahamuni, P. M. Patil, M. J. Dhanavade, M. V. Badiger, P. G. Shadija, A. C. Lokhande, and R. A. Bohara, “Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity,” Biochem. Biophys. Reports, vol. 17, pp. 71–80, 2019.
  • N. S. Rao, M. V. B. Rao, “Structural and Optical Investigation of ZnO Nanopowders Synthesized from Zinc Chloride and Zinc Nitrate,” American Journal of Materials Science, vol. 5, no. 3, pp. 66–68, 2015.
  • Z. Bilimis, “Measuring Light Transmittance and UVA and UVB of Transparent Materials using the PerkinElmer LAMBDA 35.” Agilent Technologies Inc., Mulgrave, Australia, Rep. SI-A-1148, 2011.