Atık Olivin Mineralinin Asfalt Betonunda Filler Olarak Kullanımı

Bu çalışmada ferrokrom tesislerinde kromit cevherinin zenginleştirilmesi sürecinde ortaya çıkan atık olivin malzemesinin esnek üstyapılarda filler olarak kullanılabilirliği araştırılmıştır. İlk aşamada geleneksel kırmataş kalker agregası tozu kullanılarak elde edilen gradasyonda sabit filler oranı %4.7 olarak alınmış ve bitüm oranı %3,5, %4,0, %4,5, %5,0, %5,5 alınarak optimum bitüm yüzdesi elde edilmiştir. İkinci aşamada, ilk aşamada bulunan optimum bitüm yüzdesi ile geleneksel kırmataş kalker agregası tozuna %0, %25, %50, %75 ve %100 oranlarında olivin ikame edilerek oluşturulan numunelere; stabilite, akma, pratik özgül ağırlık, boşluk yüzdesi, asfalt dolu boşluk yüzdesi ve agregalar arası boşluk yüzdesi deneyi yapılmıştır. Elde edilen sonuçlara göre geleneksel kırmataş kalker agregası filler malzemesiyle ikame edilen olivin yüzdelerine göre asfalt betonunun mühendislik özelliklerinin değişimi karşılaştırılmıştır. Sonuç olarak olivinin sıcak karışım asfalt betonlarda filler malzeme olarak kullanılabileceği görülmüştür.

The Use of Olivine Mineral From Chrome Ore Enrıchment Process Wastes as Fillers in Asphalt Concrete

In this study, the usability of the waste olivine material obtained as a result of enrichment of chromite ore in Eti Krom plants as fillers in flexible superstructures was investigated. In the first stage, the rate of fixed fillers in the gradation obtained by using traditional crushed stone powder was taken as 4.7% and the optimum bitumen percentage was obtained by taking the bitumen rate as 3.5%, 4.0%, 4.5%, 5.0%, 5.5%. In the second stage, stability, flow, practical specific gravity, percentage of voids, percentage of asphalt filled voids and aggregates to the deposits created by replacing olivine in the ratio of 25%, 50%, 75% and 100% to the traditional crushed stone powder with the optimum percentage of bitumen found in the first stage. Percentage of gap was tested. According to the results, the changes in the engineering properties of asphalt concrete were compared according to the olivine percentages substituted with traditional crushed stone filler material.

___

  • [1] F.G. Pratic`o, M. Giunta, M. Mistretta and T.M. Gulotta, “Energy and environmental life cycle assessment of sustainable pavement materials and technologies for urban roads,” Sustainabelity, vol. 12, pp. 704-719, 2020.
  • [2] A. M. Babalghaith, S. Koting, N. H. R. Sulong, M. R. Karim and B. M. Almashjary, “Performance evaluation of stone mastic asphalt (SMA) mixtures with palm oil clinker (POC) as fine aggregate replacement,” Construction and Building Materials, vol. 262, 2020, Art. no: 120546.
  • [3] J. Ma, G. Sun, D. Sun, Y. Zhang, A. C. Falchetto, A, T. Lu, M. Hu and Y. Yuan, “Rubber asphalt modified with waste cooking oil residue: Optimized preparation, rheological property, storage stability and aging characteristic,” Construction and Building Materials, vol. 258, 2020, Art. no: 120372.
  • [4] A. Balaguera, G.I. Carvajal, J. Albertí and P.F. Palmer, “Life cycle assessment of road construction alternative materials: A literature review,” Resources Conservation Recycling, vol. 132, pp. 37–48, 2018.
  • [5] C. Oreto, R. Veropalumbo, N. Viscione, S.A. Biancardo and F. Russo, “Investigating the environmental impacts and engineering performance of road asphalt pavement mixtures made up of jet grouting waste and reclaimed asphalt pavement,” Environmental Research, vol. 198, 2021, Art. no 111277.
  • [6] G. Sun, D. Sun, A. Guarin, J. Ma and F. Chen, and E. Ghafooriroozbahany, “Low temperature self-healing character of asphalt mixtures under different fatigue damage degrees,” Construction and Building Materials, vol. 223, pp. 870–882, 2019.
  • [7] A. Gedik, S. Selcuk and A.H. Lav, “Investigation of recycled fluorescent lamps waste as mineral filler in highway construction: A case of asphaltic pavement layers,” Resources, Conservation & Recycling, vol. 168, 2021, Art. no: 105290.
  • [8] A. Beycioğlu, O. Kaya, Z.B. Yıldırım, B. Bağrıaçık, M. Dobiszewska, N. Morova and S. Çetin, “Use of GRP Pipe Waste Powder as a Filler Replacement in Hot-Mix Asphalt,” Materials, vol. 13, pp. 1-15, 2020.
  • [9] Q. Chen, C. Wang and H. Fu, “Durability evaluation of road cooling coating,” Construction and Building Materials, vol. 190, pp. 13–23, 2018.
  • [10] A. H. Korayem, H. Ziari, M. Hajiloo, M. Abarghooie and P. Karimi, “Laboratory evaluation of stone mastic asphalt containing amorphouscarbon powder as filler material,” Construction and Building Materials, vol. 243, 2020, Art. no: 118280.
  • [11] S. S. Islam, G.D.R.N. Ransinchung and J. Choudhary, “Analyzing the effect of waste jarosite as an alternative filler on the engineering properties of asphalt mixes,” Construction and Building Materials, vol. 270, 2021, Art. no: 121466.
  • [12] J. Zhang, P. Li, M. Liang, H. Jiang, Z. Yao, X. Zhang and S. Yu, “Utilization of red mud as an alternative mineral filler in asphalt mastics to replace natural limestone powder,” Construction and Building Materials, vol. 237, 2020, Art. no: 117821.
  • [13] Y. Dua, M. Dai, H. Deng, D. Deng, T. Wei and L. Kong, “Laboratory investigation on thermal and road performances of asphalt mixture containing glass microsphere,” Construction and Building Materials, vol. 264, 2020, Art. no: 120710.
  • [14] H. Zhang, H. Li, A. Abdelhady, M. Jia and N. Xie, “Investigation on surface free energy and moisture damage of asphalt mortar with fine solid waste,” Construction and Building Materials, vol. 231, 2020, Art. no: 117140.
  • [15] H. Wang, H. Li, H. Zhang, X. Zhang, B. Guo, B. Yu, L. Liu and Y. Tian, “Experimental study on the aging behavior of modified asphalt with different types of fine solid wastes under different aging conditions,” Construction and Building Materials, vol. 291, 2021, Art. no: 123308.
  • [16] F. Li and Y. Yang, “Experimental investigation on the influence of interfacial effects of limestone and fly ash filler particles in asphalt binder on mastic aging behaviors,” Construction and Building Materials, vol. 290, 2021, Art. no: 123184.
  • [17] G.Tao, Y. Xiao, L. Yang, P. Cui, D. Kong and Y. Xue, “Characteristics of steel slag filler and its influence on rheological properties of asphalt mortar,” Construction and Building Materials, vol. 201, pp. 439–446, 2019.
  • [18] A. Woszuk, L. Bandura and W. Franus, “Fly ash as low cost and environmentally friendly filler and its effect on the properties of mix asphalt,” Journal of Cleaner Production, vol. 235, pp. 493-502, 2019.
  • [19] J. Wang, M. Guo and Y. Tan, “Study on application of cement substituting mineral fillers in asphalt mixture,” International Journal of Transportation Science and Technology, vol. 7, pp. 189–198, 2018.
  • [20] R. Mistry and T. K. Roy, “Effect of using fly ash as alternative filler in hot mix asphalt,” Perspectives in Science, vol. 8, pp. 307–309, 2016.
  • [21] A. Dulaimi, H.A. Nageim, F. Ruddock and L. Seton, “High performance cold asphalt concrete mixture for binder course using alkaliactivated binary blended cementitious filler,” Construction and Building Materials, vol. 141, pp. 160–170, 2017.
  • [22] Karayolları Genel Müdürlüğü. Karayolu Teknik Şartnamesi, Ankara, Türkiye, 2013. [Çevrimiçi]. Erişim: https://www.tamyol.com.tr/UserFiles/Content/KGM_Teknik_Sartnamesi_2013.pdf.
  • [23] Test method for specific gravity and absorption of coarse aggregate. annual books of ASTM standards designation, ASTM C 127-88, 64-68, 1998.
  • [24] Test method for specific gravity and absorption of coarse aggregate. annual books of ASTM standards designation, ASTM C 128-97, 69-72.
  • [25] Agregaların mekanik ve fiziksel özellikleri için deneyler bölüm 2: parçalanma direncinin tayini için metotlar, TS EN 1097–2, 2000.
  • [26] Agregaların mekanik ve fiziksel özellikleri için deneyler-bölüm 1: aşınmaya karşı direncin tayini (Mikro-Deval), TS EN 1097-1, 2002.
  • [27] Testing aggregates, methods for determination of particle shape, Flakiness index, British Standards Institution BS 812, Part 105-1, 1985.
  • [28] Bitümlü karışımlar-deney metotları, TS EN 12697-11, 2012.
  • [29] Agregaların geometrik özellikleri için deneyler- Bölüm 9: İnce tanelerin tayini- Metilen mavisi deneyi, TS EN 933-9, 2014.
  • [30] Bitümler ve bitümlü bağlayıcılar–İğne batma derinliği tayini, TS 118 EN 1426, 2002.
  • [31] Bitümler ve bitümlü bağlayıcılar-Yumuşama noktası tayini–Halka ve bilya metodu, TS 120 EN 1427, 2002.
  • [32] Petrol ve ilgili ürünler –parlama ve yanma noktasının tayini– Cleveland açık kap yöntemi, TS EN ISO 2592, 2017.
  • [33] Bitümlü ve bitümlü bağlayıcılar-çözünürlük tayini, TS 1090 EN 12592, 2002.
  • [34] “AR-GE merkezi teknik raporları,” Etikrom AŞ, Türkiye, 2021.
  • [35] Standard test methods for specific gravity of soil solids by water pycnometer, ASTM D854-14, 2014.
  • [36] T. Alataş, T. Geçkil ve P. Ahmedzade, “Asfalt betonunda siyah karbonun filler olarak kullanımı,” İMO Teknik Dergi, c. 297, ss. 4493-4507, 2008.
  • [37] S. Çetin, “Afyonkarahisar Bölgesi volkanik kayaçların sıcak karışım asfalt kaplamalarında agrega olarak kullanılabilirliğinin araştırılması,” Yüksek Lisans tezi, Fen Bilimleri Enstitüsü, Afyon Kocatepe Üniversitesi, Afyonkarahisar, Türkiye, 2007.
  • [38] C. Gürer, “Atık mermer parçalarının bitümlü yol kaplamalarında değerlendirilmesi,” Yüksek Lisans tezi, Fen Bilimleri Enstitüsü, Afyon Kocatepe Üniversitesi, Afyonkarahisar, Türkiye, 2005.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü