Poli (Adp-riboz) polimeraz (Parp) inhibitörlerinin önemi

Poli (ADP-riboz) sentetaz (PARS) adıyla da bilinen poli (ADP-riboz) polimeraz (PARP), deoksiribonükleik asid (DNA) onarımı, gen transkripsiyonu' hücre ölümü, kromatin fonksiyonu ve gen stabilitesi gibi birçok hücresel sürecin düzenlenmesinde rol oynayan nükleer bir enzimdir. Çeşitli durumlarda oksijen ve nitrojen kaynaklı radikallerin indüklediği DNA tekli zincir kırıkları PARP enzim aktivitesinde artışa neden olmakta ve hücresel fonksiyon bozuklukları ve ölümle sonuçlanmaktadır. Myokardiyal reperfüzyon hasarı, inme, şok, diyabet ve yaşlanmaya bağlı kardiyovasküler fonksiyon bozuklukları, kronik kalp yetmezliği, ilaçla-indüklenen kalp yetmezliği, kalp transplantasyonu sonrası reperfüzyon hasarı ve hiper-homosisteinemiye bağlı kardiyovasküler fonksiyon bozuklukları gibi klinik patofizyolojik koşullarda doku hasarının gelişimi açısından PARP yolağının aşırı aktivasyonu yeni ve önemli bir mekanizmayı sunmaktadır. Bu nedenle, bu yolağın PARP-inhibitörü ajanlarla inhibe edilmesi birçok kardiyovasküler ve inflamatuvar hastalığın tedavisinde yeni bir terapötik yaklaşıma yol açabileceği gibi aynı zamanda antitümör ajanların sitotoksitesini de arttırabilir.

Importance of the poly (Adp-ribose) polymerase (Parp) inhibitors

Poly (ADP-Ribose) polymerase (PARP), also known as poly (ADP-ribose) synthetase (PARS), is a nuclear enzyme that is involved in the regulation of many cellular processes such as DNA repair, gene transcription, cell cycle progression, cell death, chromatin function, and genomic stability. In several conditions, oxygen- and nitrogen-derived radical-induced DNA single-strand breaks caused PARP overactivation, and results in cellular dysfuncyion and death. Ovefactivation of PARP represents an important novel mechanism of cell dysfunction in various pathophysiologic conditions, including myocardial reperfusion injury, circulatory shock, stroke, diabetes mellitus, hyperhomocysteinemia, aging, chronic heart failure, and drug-induced heart failure. Hence, inhibition of this pathway by PARP-inhibitor agents may represent a novel therapeutic approach for the treatment of various cardiovascular and inflammatory diseases. Also, pharmacological inhibitors of PARP may be able to enhance the cytotoxicity of antitumor agents.

___

  • 1. Pacher P, Liaudet L, Bai P, et al. Activation of poly (ADP-ribose) polymerase contributes to development of doxorubicin-induced heart failure. JPET 2002; 300: 862-867.
  • 2. Pacher P, Liaudet L, Mabley JG, Komjati K, Szabo C. Pharmacologic inhibition of poly(adenosine diphosp- hate-ribose) polymerase may represent a novel therapeutic approach in chronic heart failure. J Am Coll Cardiol 2002; 40:1006-1016.
  • 3. Ten tori L, Graziani G. Chemopotentiation by PARP inhibitors in cancer therapy. Pharmacol Res 2005; 52:25-33.
  • 4. Virag L, Szabo C. The therapeutic potential polymerase inhibitors. Pharmacol Rev 2002; 54: 375-429.
  • 5. Zingarelli B, Salzman AL, Szabo C. Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin annd intracellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ Res 1998; 83: 85-94.
  • 6. Thiemermann C, Bowes J, Myint FP, Vane JR. Inhibition of the activity of poly (ADP-ribose) synthetase reduces ischemia-reperfusion injury in the heart and skeletal muscle. Proc Natl acad Sci USA 1997; 94: 679-683.
  • 7. Szabo C, Bahrle S, Stumpf N, et al. Poly (ADP-ribose) polymerase inhibition reduces reperfusion injury after heart transplantation. Circ Res 2002; 90: 100-106.
  • 8. Pacher P, Liaudet L, Soriano FG, Mabley JG, Szabo E, Szabo C. The role of poly(ADP-ribose) polymerase in the development of cardiovascular dysfunction in diabetes mellitus. Diabetes 2002; 51: 514-521.
  • 9. Szabo C, Cuzzocrea S, Zingarelli B, O'Connor M, Salzman AL. Endothelial dysfunction in a rat model of endotoxic shock. Importance of the activation of poly(ADP-ribose) synthetase by peroxynitrite. J Clin Invest'1997; 100: 723-735.
  • 10. Burkart V, Wang ZQ, Radons J, et al. Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozotocin Nat Med 1999; 5: 314-319.
  • 11. Taşatargil A, Dalaklioğlu S, Sadan G. Poly(ADP-ribose) polymerase inhibition prevents homocysteine-induced endothelial dysfunction in the isolated rat aorta. Pharmacology 2004; 72: 99-105.
  • 12. Pacher P, Mabley JG, Soriano FG, Liaudet L, Komjati K, Szabo C. Endothelial dysfunction in aging animals: the role of poly(ADP-ribose) polymerase activation. Br J Pharmacol 2002; 135: 1347-1350.
  • 13. Graziani G, Szabo C. Clinical perspectives of PARP inhibitors. Pharmacol Res 2005; 52: 109-118.
  • 14. Di Paola R, Genovese T, Caputi AP, Threadgill M, Thiemermann C, Cuzzocrea S. Beneficial effects of 5- aminoisoquinolinone, a novel, potent, water-soluble, inhibitor of poly (ADP-ribose) polymerase, in a rat model of splanchnic artery occlusion and reperfusion. Eur J Pharmacol 2004; 492: 203-210.
  • 15. Cuzzocrea S. Shock, inflammation and PARP. Pharmacol Res 2005; 52: 72-82.
  • 16. Szabo G, Bahrle S. Role of nitrosative stres and poly(ADP-ribose) polymerase activation in myocardial reperfusion injury. Curr Vase Pharmacol 2005; 3: 215-220.
  • 17. Murthy KG, Xiao CY, Mabley JG, Chen M, Szabo C. Activation of poly(ADP-ribose) polymerase in circulating leukocytes during myocardial infarction. Shock 2004; 21: 230-234.
  • 18. Kaplan J, O'Connor M, Hake PW, Zingarelli B. Inhibitors of poly (ADP-ribose) polymerase ameliorate myocardial reperfusion injury by modulation of activator protein-1 and neutrophil infiltration. Shock 2005; 23: 233-238.
  • 19. Szabo C. Cardioprotective effects of poly(ADP-ribose) polymerase inhibition. Pharmacol Res 2005; 52: 34-43.
  • 20. Zingarelli B, Hake PW, O'Connor M, et al. Differential regulation of activator protein-1 and heat shock factor 1 in myocardial ischemia and reperfusion injury: role of poly(ADP-ribose) polymerase-1. Am J Physiol Heart Circ Physiol 2004; 286: 1408-1415.
  • 21. Szabo C, Virag L, Cuzzocrea S, et al. Protection against peroxynitrite-induced fibroblast injury and arthritis development by inhibition of poly(ADP-ribose) synt-hase. Proc Natl Acad Sci U S A 1998; 95: 3867-3872.
  • 22. Szabo C, Wong HR, Bauer PI, et al. Regulation of components of the inflammatory response by 5-iodo-6- amino-l,2-benzopyrone, an inhibitor of poly(ADP- ribose) synthetase and pleiotropic modifier of cellular signal pathways. Int J Oncol 1997; 10: 1093-1101.
  • 23. Roebuck KA, Rahman A, Lakshminarayanan V, Janakidevi K, Malik AB. H2O2 and tumor necrosis factor-alpha activate intercellular adhesion molecule 1 (ICAM-1) gene transcription through distinct cis- regulatory elements within the ICAM-1 promoter. J Biol Chem 1995; 270:18966-18974.
  • 24. Oliver FJ,Menissier-de Murcia J, Nacci C ,et al. Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J 1999; 18: 4446-4454.
  • 25. Yang Z, Zingarelli B, Szabo C. Effect of genetic disruption of poly (ADP-ribose) synthetase on delayed production of inflammatory mediators and delayed necrosis during myocardial ischemia-reperfusion injury. Shock 2000; 13: 60-66.
  • 26. Fiorillo C, Ponziani V, Giannini L, et al. Beneficial effects of poly (ADP-ribose) polymerase inhibition against the reperfusion injury in heart transplantation. Free Radic Res 2003; 37: 331-339.
  • 27. Szabo G, Soos P, Heger U, et al. Poly(ADP-ribose) polymerase inhibition attenuates biventricular reperfusion injury after orthotopic heart transplantation. Eur J Cardiothorac Surg 2005; 27: 226-234.
  • 28. Szabo G, Soos P, Mandera S, et al. INO-1001 a novel poly(ADP-ribose) polymerase (PARP) inhibitor improves cardiac and pulmonary function after crystalloid cardioplegia and extracorporal circulation. Shock 2004; 21: 426-432.
  • 29. Chatterjee PK, Chatterjee BE, Pedersen H, et al. 5- Aminoisoquinolinone reduces renal injury and dysfunction caused by experimental ischemia/ reperfusion. Kidney Int 2004; 65: 499-509.
  • 30. Bozlu M, Eskandari G, Cayan S, Canpolat B, Akbay E, Atik U. The effect of poly (adenosine diphosphate-ribose) polymerase inhibitors on biochemical changes in testicular ischemia-reperfusion injury. J Urol 2003; 169: 1870-1873.
  • 31. Strosznajder RP, Jesko H, Zambrzycka A. Poly(ADP- ribose) polymerase: the nuclear target in signal transduction and its role in brain ischemia-reperfusion injury. Mol Neurobiol 2005; 31: 149-167.
  • 32. Yang J, Klaidman LK, Chang ML, et al. Nicotinamide therapy protects against both necrosis and apoptosis in a stroke model. Pharmacol Biochem Behav 2002; 73:901-910
  • 33. Chiarugi A, Meli E, Calvani M, et al. Novel isoquinolinone-derived inhibitors of poly(ADP-ribose) polymerase-1: pharmacological characterization and neuroprotective effects in an in vitro model of cerebral ischemia. J Pharmacol Exp Ther 2003; 305: 943-949.
  • 34. Sun AY, Cheng JS. Neuroprotective effects of poly (ADP-ribose) polymerase inhibitors in transient focal cerebral ischemia of rats. Zhongguo Yao Li Xue Bao 1998; 19: 104-108.
  • 35. Docherty JC, Kuzio B, Silvester JA, Bowes J, Thiemermann C. An inhibitor of poly (ADP-ribose) synthetase activity reduces contractile dysfunction and preserves high energy phosphate levels during reperfusion of the ischaemic rat heart. Br J Pharmacol 1999; 127: 1518-1524.
  • 36. Szabados E, Literati-Nagy P, Farskas B, Sumegi B. BGP-15, a nicotinic amidoxime derivate protecting heart from ischemia reperfusion injury through modulation of poly(ADP-ribose) polymerase. Biochem Pharmacol 2000; 59: 937-945.
  • 37. Grupp IL, Jackson TM, Hake P, Grupp G, Szabo C. Protection against hypoxia-reoxygenation in the absence of poly(ADP-ribose) synthetase in isolated working hearts. J Mol Cell Cardiol 1999; 31: 297-303.
  • 38. Pacher P, Vaslin A, Benko R, et al. A new, potent poly(ADP-ribose) polymerase inhibitor improves cardiac and vascular dysfunction associated with advanced aging. J Pharmacol Exp Ther 2004; 311: 485-491.
  • 39. Ide T, Tsutsui H, Kinugawa S, et al. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 1999; 85: 357-363.
  • 40. Ekelund UE, Harrison RW, Shokek O, et al. Intravenous allopurinol decreases myocardial oxygen consumption and increases mechanical efficiency in dogs with pacing-induced heart failure. Circ Res 1999; 85: 437-445.
  • 41. Bauersachs J, Bouloumie A, Fraccarollo D, Hu K, Busse R, Ertl G. Endothelial dysfunction in chronic myocardial infarction despite increased vascular endothelial nitric oxide synthase and soluble guanylate cyclase expression: role of enhanced vascular superoxide production. Circulation 1999; 100: 292-298.
  • 42. Milim MJ, Coyle CM, Schanbacher BL, Weinstein DM, Bauer JA. Peroxynitrite induced nitration and inactivation of myofibrillar creatine kinase in experimental heart failure. Cardiovasc Res 2001; 49:798-807.
  • 43. Cappola TP, Kass DA, Nelson GS, et al. Allopurinol improves myocardial efficiency in patients with idio- pathic dilated cardiomyopathy. Circulation 2001; 104: 2407-2411.
  • 44. Fukuchi M, Hussain SN, Giaid A. Heterogeneous expression and activity of endothelial and inducible nitric oxide synthases in end-stage human heart failure: their relation to lesion site and beta-adrenergic receptor therapy. Circulation 1998; 98: 132-139.
  • 45. Vejlstrup NG, Bouloumie A, Boesgaard S,et al. Inducible nitric oxide synthase (İNOS) in the human heart: expression and localization in congestive heart failure. J Mol Cell Cardiol 1998; 30: 1215-1223.
  • 46. Teerlink JR, Clozel M, Fischli W, Clozel JP. Temporal evolution of endothelial dysfunction in a rat model of chronic heart failure. J Am Coll Cardiol 1993; 22: 615-620.
  • 47. Ben Driss A, Devaux C, Henrion D, et al. Hemodynamic stresses induce endothelial dysfunction and remodeling of pulmonary artery in experimental compensated heart failure. Circulation 2000; 101: 2764-2770.
  • 48. Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R. Peroxynitrite is a major contributor to cytokine- induced myocardial contractile failure. Circ Res 2000; 87: 241-247.
  • 49. Drexler H, Hayoz D, Munzel T, et al. Endothelial function in chronic congestive heart failure. Am T Cardiol 1992; 69: 1596-1601.
  • 50. Ramsey MW, GoodfellowJ, Jones CJ, Luddington LA Lewis MJ, Henderson AH. Endothelial control of arterial distensibility is impaired in chronic heart failure. Circulation 1995; 92: 3212-3219.
  • 51. Francis J, Weiss RM, Wei SG, Johnson AK, Felder KB. Progression of heart failure after myocardial infarction in the rat. Am J Physiol Regul Integr Comp Physiol 2001; 281: 1734-1745.
  • 52. Szabo C, Pacher P, Zsengeller Z, et al. Angiotensin II- mediated endothelial dysfunction: role of poly(ADP- ribose) polymerase activation. Mol Med 2004; 10:28-35.
  • 53. Wattanapitayakul SK, Weinstein DM, Holycross BJ, Bauer JA. Endothelial dysfunction and peroxynitrite formation are early events in angiotensin-induced cardiovascular disorders. FASEB J 2000; 14: 271-278.
  • 54. Minchenko AG, Stevens MJ, White L, et al. Diabetes- induced overexpression of endothelin-1 and endothelin receptors in the rat renal cortex is mediated via poly(ADP-ribose) polymerase activation. FASEB J 2003; 17: 1514-1516.
  • 55. Farivar AS, McCourtie AS, MacKinnon-Patterson BC, et al.Poly (ADP) ribose polymerase inhibition improves rat cardiac allograft survival. Ann Thorac Surg 2005; 80: 950-956.
  • 56. Blum RH, Carter SK. Adriamycin. A new anticancer drug with significant clinical activity. Ann Intern Med 1974; 80: 249-259.
  • 57. Hortobagyi GN. Anthracyclines in the treatment of cancer. An overview. Drugs 1997; 54: 1-7.
  • 58. Young RC, Ozols RF, Myers CE. The anthracycline antineoplastic drugs. N Engl J Med 1981; 305: 139-153.
  • 59. Singal PK,Iliskovic N.Doxorubicin-induced cardiomyopathy. N Engl J Med 1998; 339: 900-905.
  • 60. Olson RD, Boerth RC, Gerber JĞ, Nies AS. Mechanism of adriamycin cardiotoxicity: evidence for oxidative stress. Life Sci 1981; 29: 1393-1401.
  • 61. Doroshow JH, Davies KJ. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem 1986; 261: 3068-3074.
  • 62. Weinstein DM, Milim MJ, Bauer JA. Cardiac peroxynitrite formation and left ventricular dysfunction following doxorubicin treatment in mice. J Pharmacol Exp Ther 2000; 294: 396-401.
  • 63. Szenczi O, Kemecsei P, Holthuijsen MF, et al. Poly(ADP-ribose) polymerase regulates myocardial calcium handling in doxorubicin-induced heart failure. Biochem Pharmacol 2005; 69: 725-732.
  • 64. Szabo C. Roles of poly(ADP-ribose) polymerase activation in the pathogenesis of diabetes mellitus and its complications. Pharmacol Res 2005; 52: 60-71.
  • 65. Fein FS. Diabetic cardiomyopathy. Diabetes Care 1990; 13:1169-1179.
  • 66. Regan TJ, Ahmed S, Haider B, Moschos C, Weisse A. Diabetic cardiomyopathy. experimental and clinical observations. N J Med 1994; 91: 776-778.
  • 67. Kajsrura J, Fiordaliso F, Andreoli AM, et al. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin Il-mediated oxidative stress. Diabetes 2001; 50: 1414-1424.
  • 68. Dandona P, Thusu K, Cook S, et al. Oxidative damage to DNA in diabetes mellitus. Lancet. 1996; 347: 444-445.
  • 69. Tanaka Y, Gleason CE, Tran PO, Harmon JS, Robertson RP. Prevention of glucose toxicity in HIT- T15 cells and Zucker diabetic fatty rats by antioxidants. Proc Natl Acad Sci U S A 1999; 96: 10857-10862.
  • 70. Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res 2000; 87: 1123-1132.
  • 71. Garcia Soriano F, Virag L, Jagtap P, et al. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med 2001; 1: 108-113.
  • 72. Soriano FG, Pacher P, Mabley J, Liaudet L, Szabo C. Rapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly(ADP-ribose) polymerase. Circ Res 2001; 89: 684-691.
  • 73. Du X, Matsumura T, Edelstein D, et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 2003; 112:1049-1057.
  • 74. Mabley JG, Soriano FG. Role of nitrosative stress and poly(ADP-ribose) polymerase activation in diabetic vascular dysfunction. Curr Vase Pharmacol 2005; 3: 247-252.
  • 75. Shima H, Nakayasu M, Aonuma S, Sugimura T, Nagao M. Loss of the MYC gene amplified in human HL-60 cells after treatment with inhibitors of poly(ADP- ribose) polymerase or with dimethyl sulfoxide. Proc Natl Acad Sci U S A 1989; 86: 7442-7445.
  • 76. Oliver FJ, Menissier-de Murcia J, Nacci C, et al. Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J 1999; 18: 4446-4454.
  • 77. Szabo C. PARP as a Drug Target for the Therapy of Diabetic Cardiovascular Dysfunction. Drug News Perspect 2002; 15: 197-205.
  • 78. Cuzzocrea S, Pisano B, Dugo L, et al. Rosiglitazone, a ligand of the peroxisome proliferator- activated receptor-gamma, reduces acute inflammation. Eur J Pharmacol 2004; 483: 79-93.
  • 79. Da Ros R, Assaloni R, Ceriello A. The preventive anti- oxidant action of thiazolidinediones: a new therapeutic prospect in diabetes and insulin resistance. Diabet Med 2004; 21: 1249-1252.
  • 80. OBrosova IG, Stevens MJ, Pacher P, et al. Aldose reductase inhibition counteracts oxidative/nitrosative stres and poly(ADP-ribose) polymerase activation in two tissue-sites for diabetic complications. FASEB J 2004; 18: A1186.
  • 81. Burkle A, Diefenbach J, Brabeck C, Beneke S. Ageing and PARP. Pharmacol Res 2005; 52: 93-99.
  • 82. Beneke S, Burkle A. Poly(ADP-ribosyl)ation, PARP, and aging. Sci Aging Knowledge Environ 2004; 9.
  • 83. Kim MY, Zhang T, Kraus WL. Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal. Genes Dev 2005; 19: 1951-1967.
  • 84. Burkle A, Beneke S, Muiras ML. Poly(ADP-ribosyl) ation and aging. Exp Gerontol 2004; 39: 1599-1601.
  • 85. Meyer-Ficca ML, Meyer RG, Jacobson EL, Jacobson MK. Poly(ADP-ribose) polymerases: managing genome stability. Int J Biochem Cell Biol 2005; 37: 920-926.
  • 86. Csiszar A, Pacher P, Kaley G, Ungvari Z. Role of oxidative and nitrosative stress, longevity genes and poly(ADP-ribose) polymerase in cardiovascular dysfunction associated with aging. Curr Vase Pharmacol 2005; 3: 285-291.
  • 87. Hatake K, Kakishita E, Wakabayashi I, Sakiyama N, Hishida S. Effect of aging on endothelium-dependent vascular relaxation of isolated human basılar artery to thrombin and bradykinin. Stroke 1990; 21: 1039-1043.
  • 88. Taddei S,Vırdis A, Mattei P, et al. Aging and endothelial function in normotensive subjects and patients with essential hypertension. Circulation 1995; 91: 1981-1987.
  • 89. Inoue M, Inoue K. Role of free radicals in and around vascular endothelial cells in the mechanism of aging. Ann N Y Acad Sci 1996; 786: 224-232.
  • 90. Rodriguez-Martinez MA, Alonso MJ, Redondo J, Salaices M, Marin J. Role of lipid peroxidation and the glutathione-dependent antioxidant system in the impairment of endothelium-dependent relaxations with age. Br J Pharmacol 1998; 123: 113-121.
  • 91. van der Loo B, Labugger R, Skepper JN, et al. Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med 2000; 192: 1731-1744.
  • 92. Pacher P, Mabley JG, Soriano FG, Liaudet L, Szabo C. Activation of poly(ADP-ribose) polymerase contributes to the endothelial dysfunction associated with hypertension and aging. Int J Mol Med 2002; 9: 659-664.
  • 93. Blundell G, Jones BG, Rose FA, Tudball N. Homocysteine mediated endothelial cell toxicity and its amelioration. Atherosclerosis 1996; 122: 163-172.
  • 94. Loscalzo J. The oxidant stress of hyperhomocys- teinemia. J Clin Invest 1996; 98: 5-7.
  • 95. Tentori L, Portarena I, Graziani G. Potential clinical applications of poly(ADP-ribose) polymerase inhibi- tors. Pharmacol Res 2002; 45: 73-85.
  • 96. Tentorini L, Graziani G. Temozolomide: an update on pharmacological strategies to increase its antitumor activity. Med Chem Rev-Online 2004; 1: 144-150.
  • 97. Tentorini L, Leonetti C, Scarsella M, et al. Combined treatment with temozolomide and poly(ADP-ribose) polymerase inhibitor enhances survival of mice bearing hematological malignancy at the CNS site. Blood 2002; 99: 2241-2244.
  • 98. Tentorini L, Leonetti C, Scarsella M, et al. Systemic administration of GPI 15427 a novel poly(ADP-ribose) polymerase inhibitor, increases the antitumor activity of temozolomide against intracranial melonoma, glioma, lyphoma. Clin canser Res 2003; 9: 5370-5379.
  • 99. Calabrese CR, Almassy R, Barton S, et al. Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymetrase-1 inhibitor AG 14361. J Natl Cancer Inst 2004; 96: 56-67.
  • 100. Masutani M, Nakagama H, Sugimura T. Poly(ADP- ribose) and carcinogenesis. Genes Chromosomes Cancer 2003; 38: 339-348.
  • 101. Tentorini L, Leonetti C, Scarsella M, et al. Brain distri¬ bution and efficacy as chemosensitizer of an oral formulation of PARP-1 inhibitor GPI 15427 in experimental models of CNS tumors. Int J Oncol 2005;26:415-424.
  • 102.Woon EC, Threadgill MD. Poly(ADP-ribose)poly-merase inhibition - where now? Curr Med Chem 2005; 12: 2373-2392.
  • 103. Huber A, Bai P, de Murcia JM, de Murcia G. PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development. DNA Repair (Amst) 2004; 3: 1103-1108.