Kemirgende ve insanda beyin gelişimi

Erişkin dönemde bazı özel beyin bölgelerinde yeni hücre oluşabilmesine rağmen, memelilerde beyin gelişiminin genel olarak embriyonik dönemde başlayarak adölesan dönemin sonuna kadar devam ettiği kabul edilmektedir. Kemirgen ve insan beyni arasında önemli farklılıklar olmasıyla birlikte genel yapılanma birbirine benzer. Ancak, gelişimleri birbirinden oldukça farklıdır. Kemirgenlerde daha çok doğumdan sonraki gelişim önemli iken insanda gelişimin büyük bir bölümü intrauterin dönemde şekillenir. Bunun yanı sıra beyin gelişim süreci, kemirgenlerde günlerle, insanlarda haftalarla veya aylarla ifade edilir. Bu konuda çalışacak araştırıcıların gelişim dönemlerine dikkat etmesi ve deneyleri buna göre planlanmaları uygun olacaktır. Bu yazıda, sıçan beyninin fiziksel ve fonksiyonel gelişiminin insan beyniyle karşılaştırılarak özetlenmesi amaçlanmıştır.
Anahtar Kelimeler:

Beyin, Rodentia, Sinir sistemi

Brain development in rodents and humans

Brain development of mammalian begins in embryonic period and continues until the end of the adolescence, despite occur new cells in adult period. The normal ontogeny of neural development in rodents is different from humans, but general gross structure of the brains of rodents and humans is similar. But, properties of brain development of these species are very different. While postnatal brain development is more important in rodents, development in human brain is over in intrauterin stage. However, brain development of the rodent proceeds on a timeline of days versus weeks to months in humans. In further studies, researchers should consider for the developmental stages in their study design. The aim of this article is to describe similarities and differences of physically and functionally developmental processes of brain between rodents and humans.

___

  • 1. Barone S Jr, Das KD, Lassiter TL, White LD. Vulnerable processes of nervous system development: a review of markers and methods. Neurotoxicology 2000; 21:15-36.
  • 2. Dobbing J, Sands J. Comparative aspects of the brain growth spurt, Early Hum Dev 1979; 3: 79-83.
  • 3. Spear LP. The adolescent brain and age-related behavioral manifestations.Neurosci and Biobehav Rev 2000;24:417-463
  • 4. Levin HS, Culhane KA, Hartmann J, et al. Developmental changes in performance on tests of purported frontal lobe functioning. Dev Neuropsychology 1991; 7; 377-395.
  • 5. Graber JA, Petersen AC. Cognitive changes in adolescence: biological perspectives. In: Gibson KR, Petersen AC, Editors. Brain maturation and cognitive development: comparative and cross-cultural perspectives, Aldine de Gruyter, New York, NY, 1991; 253-279.
  • 6. Rosenzweig MR, Krech D, Bennett FL, Zolman JF. Variation in environmental complexity and brain measures. J Comparative & Physiological Psychology 1962; 55: 1092-1095.
  • 7. DeSesso JM. Comparative embryology. In: Handbook of Developmental Toxicology (Hood RD, ed). Boca Raton, FL:CRC Press, 1996; 111-174.
  • 8. Herschkowitz N, Kağan J, Zilles K. Neurobiological bases of behavioral development in the first year. Neuropediatrics 1997; 28: 296-306.
  • 9.Bayer SA, Akman J. Neocortical Development. New York: Raven Press, 1991.
  • 10. Carpenter MB, Sutin J. Human Neuroanatomy. Baltimore: Williams & Wilkins, 1983;71 -74.
  • 11. Eriksson PS, Perfılieva E, Bjork-Eriksson T et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4:1313-1317.
  • 12. Finnell RH, Junker WM, Wadman LK, Cabrera RM. Gene expression profiling within the developing neural tube. Neurochem Res. 2002; 27: 1165-1180.
  • 13. Koop M, Rilling G, Herrmann A, Kretschmann HJ. Volumetric development of the fetal telencephalon, cerebral cortex, diencephalon, and rhombencephalon including the cerebellum in man. Bibl Anat 1986; 28:53-78.
  • 14. Bayer SA. Development of the hippocampal region in the rat. II: Morphogenesis during embryonic, and early postnatal life. J Comp Neurol 1980; 190:115-134.
  • 15. Rakic P, Caviness VSJ. Cortical development view from neurological mutants two decades later. Neuron 1995;14: 1101,1104.
  • 16. Tanapat P, Hastings NB, Reeves AJ, Gould E. Estrogen stimulates a transient increase in the number r of new neurons in the dentate gyrus of the adult female rat.Journal of Neuroscience 1999; 19: 5792-5801.
  • 17. Kempermann G, Kuhn HG, Gage FH. More hip pocampal neurons in adult mice living in an enriched environment. Nature 1997; 386: 493-495.
  • 18. Nilsson M, Perfilieva E, Johansson U, Orwar Q, Erikson PS. Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J Neurobiol 1999; 39: 569-578.
  • 19. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ. Learning enhances adult neurogenesis in the hippo¬campal formation. Nat Neurosci 1999; 2: 260-265.
  • 20. Wagner JP, Black IB, DeCicco-Bloom E. Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor.J Neurosci 1999; 19: 6006-6016.
  • 21. Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingström A. Increased neurogenesis in a model of electroconvulsive therapy.,Biol Psych 2000; 47: 1043-1049.
  • 22. Malberg JE, Eisch AJ, Nestler EJ, Dunman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20:9104-9110,
  • 23. Grossman AW, Churchill JD, McKinney BC, Kodish IM, Otte SL, Greenough WT. Experience effects on brain development: possible contributions to psycho- pathology. J Child Psychol Psychiatry 2003; 44: 33-63.
  • 24. Price DJ, Willshaw DJ. Mechanisms of cortical development. ,New York: Oxford University Press,2000.
  • 25. Reid CB, Liang-1, Walsh C. Systematic widespread clonal organization in cerebral cortex. Neuron 1995; 15: 299-310.
  • 26. O'Rourke NA, Dailey ME, Smith SJ, McConnell SK. Diverse migratory pathways in the developing cerebral cortex. Science 1992; 258: 299-302.
  • 27. Ignacio MP, Kimm EJ, Kageyama GH, Yu J, Robertson RT. Postnatal migration of neurons and formation of laminae in rat cerebral cortex. Anat Embryol (Berl) 1995; 191: 89-100.
  • 28. McConnell SK. The specification of neuronal identity in the mammalian cerebral cortex. Experientia 1990;46: 922-929.
  • 29. Jacobson M. Formation of dendrites and development of synaptic connections. In: Developmental Neurobiology. New York: Plenum Press, 1991; 223-284.
  • 30. Uylings HB, van Eden CG. Qualitative and quantitative comparison of the prefrontal cortex in.rat and in primates, including humans. Prog Brain Res 1990;85:31-62.
  • 31. O'Callaghan JP. Assessment of neurotoxicity using assays of neuron- and glia-localized proteins: chronology and critique. In: N euro toxicology. Tilson HA, Mitchell C, eds. New York: Raven Press, Ltd, 1992; 83-99.
  • 32. Watson WE. Physiology of neuroglia. Physiol Rev 1974; 54: 245-271.
  • 33. Cuadros MA, Navascues J. The origin and differentiation of microglial cells during development. Prog Neurobiol 1998; 56:173-189.
  • 34. Wiggins RC. Myelination: a critical stage in development. Neurotoxicology 1986; 7: 103-120.
  • 35. Penfield W. Cytology and Cellular Pathology of the Nervous System. New York: Paul'B. Hoeber, Inc, 1932.
  • 36. Lee JC, Mayer-Proschel M, Rao MS. GHogenesis in the central nervous system. Glia 2000; 30: 105-121.
  • 37. Blaschke AJ, Weiner JA, Chun J. Programmed cell death is a universal feature of embryonic and postnatal neuroproliferative regions throughout the central nervous system. J Comp Neurol 1998; 396: 39-50.
  • 38. Dobbing J, Sands j. The brain growth spurt in various mammalian species. Early Hum Dev 1979; 3: 79-84.
  • 39. Rakic S, Zecevic N. Programmed cell death in the developing human telenceplialon. European Journal of Neuroscience, 2000; 12: 2721-2734.
  • 40. Voyvodic JT. Cell death in cortical development: How much? Why? So what? Neuron 1996; 16: 693-696.
  • 41. Bourgeois JP, Rakic P. Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J Neurosci 1993; 13: 2801-2820.
  • 42. Williams RW, Rakic P. Elimination of neurons from the rhesus monkey's lateral geniculate nucleus during development. J Comp Neurol 1988; 272: 424-436.
  • 43. Zecevic N, Bourgeois JP, Rakic P. Changes in synaptic density in motor cortex of rhesus monkey during fetal and postnatal life. Brain Res Dev Brain Res 1989;50:11-32.
  • 44. Bourgeois JP, Goldman-Rakic PS, Rakic P. Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb Cortex 1994; 4: 78-96.
  • 45. Zecevic N, Rakic P. Synaptogenesis in monkey somatosensory cortex. Cereb Cortex 1991; 1: 510-523.
  • 46. LaMantia AS, Rakic P. Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci 1990; 10: 2156-2175.
  • 47. Wiesel TN, Hubel DH. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol 1965; 28: 1029-1040.
  • 48. Rauschecker JP. Developmental plasticity and memory. Behav Brain Res 1995; 66:7-12.
  • 49. Rosenzweig MR, Bennett EL. Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res 1996; 78: 57-65.
  • 50. Joseph R. Environmental influences on neural plasti ity, the limbic system, emotional development and stachment: a review. Child Psychiatry Hum Dev 1999 29: 189-208.
  • 51. Paus T, Zijdenbos A, Worsley K, et al. Structural maturation of neural pathways in children and adole cents: in vivo study. Science 1999; 283: 1908-1911.
  • 52. Elbert T, Pantev C, Wienbruch C, Rockstroh B, Tan E. Increased cortical representation of the fingers of the left hand in string players. Science 1995; 270: 305-307.
  • 53. Steen RG, Ogg RJ, Reddick WE, Kingsley PB. Age related changes in the pediatric brain: quantitative M evidence of maturational changes during adolescenci AmJ Neuroradiol 1997; 18: 819-828.
  • 54. Klein R. Role of neurotrophins in mouse neuronal de velopment. FASEB J 1994; 8: 738-744.
  • 55. Zhou J, Bradford HF. Nerve growth factors and th control of neurotransmitter pheriotype selection in the mammalian central nervous system. Prog Neurobio 1997; 53: 27-43
  • 56. Barone S Jr. Applications of the neurotrophic hypothe sis to developmental neurotoxicology. In: Target Organ Toxicity-Neurotoxicology. Tilson HA, Harry GJ, eds Washington, DC: Taylor & Francis, 1999; 179-200.
  • 57. Castren E, da Penha B, Lindholm D, Thoenen H Differential effects of MK-801 on brain-derived neurotrophic factor mRNA levels in different regions of the rat brain. Exp Neurol 1993; 122: 244-252.
  • 58. da Penha B, Cooper J, Castren E et al. Cholinergic regulation of brain-derived neurotrophic factoi (BDNF) and nerve growth factor (NGF) but not neurotrophin-3 (NT-3) mRNA levels in the developing rat hippocampus. J Neurosci 1993; 13: 3818-3826.
  • 59. Alberch J, Brito B, Notario V, Castro R. Prenatal haloperidol treatment decrease; nerve growth factor receptor and mRNA in neonate rat forebrain. Neurosci Lett 1991; 131: 228-232.
  • 60. Zafra F, Castren E, Thoenen H, Lindholm D. Interplay between glutamate and gamma-aminobutyric acid transmitter systems in the physiological regulation of brain-derived neurotrophic factor and nerve growth factor synthesis in hippocampal neurons. Proc Natl Acad Sci U S A 1991; 88:10037-10041.
  • 61.Perez-Navarro E, Alberch J, Arenas E, Marsal J. Nerve growth factor and its receptor are differentially modified by chronic naltrexone treatment during rat brain development. NeurosciLett 1993; 149: 47-50.
  • 62. Sapolsky RM, Meaney MJ. Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and stress hyporesponsive period. Brain Res Rev 1986; 11: 65-76.
  • 63. Uysal N, Gönenç S, Açıkgöz O et al. Age-dependent effects of maternal deprivation on oxidative stress in infant rat brain. Neurosci Lett 2005;384:98-101.