Tabakalı Fonksiyonel Derecelendirilmiş Kabuk Yapıların Kritik Burkulma Yükü Analizi

Bu çalışmada, silisyum nitrür (Si3N4)/paslanmaz çelik (SUS304) sistemlerinden yapılmış tabakalı fonksiyonel derecelendirilmiş kabuk yapıların birinci mod için kritik burkulma yük analizi çalışılmıştır. Kabuk yapılar üç tabakalı olarak düşünülmüş ve tabaka pozisyonları L9 (33) ortogonal diziye göre gerçekleştirilmiştir. Tabakaların mekanik özellikleri, kompozit malzeme karışımının basit kuralına bağlı olarak hesaplanmıştır. Tabakaların mekanik özellikleri kontrol faktörleri olarak kabul edilmiştir. Optimum tabaka seviyeleri sinyal gürültü (S/N) analizi kullanılarak elde edilmiştir. Sonuçlar üzerinde önemli tabakalar ve onların yüzde katkıları varyans analizi (ANOVA) kullanılarak tespit edilmiştir. Maksimum burkulma yük değeri optimum tabakaların farklı sıralamasına bağlı gerçekleştirilmiştir.

Critical Buckling Load Analysis of Layered Functionally Graded Shell Structures

In this study, critical buckling load analysis for first mode of layered functionally graded shell structures made of silicon nitride (Si3N4)/stainless steel (SUS304) systems is studied. The shell structures are considered as three layers and the layer positions are carried out according to L9 (33) orthogonal array. The mechanical properties of the layers are calculated according to a simple rule of mixture of composite materials. The mechanical properties of the layers is assumed to be control factors. Optimum layer levels are obtained using signal to noise (S/N) analysis. Significant layers and their percent contributions on the results are detected using analysis of variance (ANOVA). Maximum buckling load value is carried out based on different arrangements of optimum layer levels.

___

  • Koizumi M. 1997. FGM activities in Japan, Composites Part B: Engineering, 28, 1997, p. 1-4.
  • Singh JMS, Thangaratnam RK. 2010. Buckling and vibration analysis of FGM plates and shells. Frontiers in Automobile and Mechanical Engineering (FAME), 2010: IEEE; 2010. p. 280-285.
  • Shariat BAS, Eslami MR. 2007. Buckling of thick functionally graded plates under mechanical and thermal loads, Composite Structures, 78, 2007, p. 433-439.
  • Li S-R, Batra RC. 2006. Buckling of axially compressed thin cylindrical shells with functionally graded middle layer, Thin-Walled Structures, 44, 2006, p. 1039-1047.
  • Zhao X, Lee YY, Liew KM. 2009. Mechanical and thermal buckling analysis of functionally graded plates, Composite Structures, 90, 2009, p. 161-171.
  • Feldman E, Aboudi J. 1997. Buckling analysis of functionally graded plates subjected to uniaxial loading, Composite Structures, 38, 1997, p. 29-36.
  • Huang H, Han Q. 2008. Buckling of imperfect functionally graded cylindrical shells under axial compression, European Journal of Mechanics - A/Solids, 27, 2008, p. 1026-1036.
  • Ramu I, Mohanty SC. 2014. Buckling Analysis of Rectangular Functionally Graded Material Plates under Uniaxial and Biaxial Compression Load, Procedia Engineering, 86, 2014, p. 748-757.
  • Mohammadi M, Saidi AR, Jomehzadeh E. 2010. Levy Solution for Buckling Analysis of Functionally Graded Rectangular Plates, Applied Composite Materials, 17, 2010, p. 81-93.
  • avaheri R, Eslami M. 2002. Buckling of Functionally Graded Plates under In‐plane Compressive Loading, ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 82, 2002, p. 277-283.
  • Reddy BS, Kumar JS, Reddy CE, Reddy KVK. 2013. Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory, Journal of Composites, 2013, 2013, p. 1-12.
  • Mahdavian M. 2009. Buckling analysis of simply-supported functionally graded rectangular plates under non-uniform in-plane compressive loading, Journal of Solid Mechanics, 1, 2009, p. 213225.
  • Sepiani HA, Rastgoo A, Ebrahimi F, Ghorbanpour Arani A. 2010. Vibration and buckling analysis of two-layered functionally graded cylindrical shell, considering the effects of transverse shear and rotary inertia, Materials & Design, 31, 2010, p. 1063-1069.
  • Saha R, Maiti P. 2012. Buckling of simply supported FGM plates under uniaxial load, International Journal of Civil and Structural Engineering, 2, 2012, p. 1035-1050.
  • Bodaghi M, Saidi AR. 2010. Levytype solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory, Applied Mathematical Modelling, 34, 2010, p. 3659-3673.
  • Bagherizadeh E, Kiani Y, Eslami MR. 2011. Mechanical buckling of functionally graded material cylindrical shells surrounded by Pasternak elastic foundation, Composite Structures, 93, 2011, p. 3063-3071.
  • Mozafari H, Ayob A. 2012. Effect of Thickness Variation on the Mechanical Buckling Load in Plates Made of Functionally Graded Materials, Procedia Technology, 1, 2012, p. 496-504.
  • Oyekoya OO, Mba DU, El-Zafrany AM. 2009. Buckling and vibration analysis of functionally graded composite structures using the finite element method, Composite Structures, 89, 2009, p. 134-142.
  • Talha M, Singh BN. 2010. Static response and free vibration analysis of FGM plates using higher order shear deformation theory, Applied Mathematical Modelling, 34, 2010, p. 3991-4011.
  • Shen H-S. Functionally graded materials: nonlinear analysis of plates and shells: CRC press, Boca Raton; 2009. [
  • Roy RK. A primer on the Taguchi method: Van Nostrand Reinhold, New York; 1990.
  • Ross PJ. Taguchi Techniques for Quality Engineering, 2nd Edition, McGraw-Hill International Book Company, New York; 1996.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi