Boyalı Suların Çitosan Koagülasyonu ile Arıtımında Box-Wilson İstatistiksel Tasarım Yönteminin Kullanılması

Tekstil endüstrisi atıksularındaki en önemli kirletici kaynakları proseste kullanılan boyalardır. Bu çalışmada, boyalı sulardan renk ve KOİ giderimi amacıyla çitosan ile koagülasyon yöntemi uygulanmıştır. Deneysel çalışmalarda Box Wilson istatistiksel tasarım yöntemi kullanılmış, boya konsantrasyonu, çitosan konsantrasyonu ve koagülasyon-flokülasyon sonrası çökelme süresinin renk ve KOİ giderme verimi üzerindeki etkileri incelenmiştir. Boya konsantrasyonu 50-200 mg/l, çitosan konsantrasyonu 50-200 mg/l ve çökelme süresi 30-120 dakika aralığında seçilmiştir. En yüksek renk giderme veriminin (%70) elde edildiği boya konsantrasyonu 50 mg/l, çitosan konsantrasyonu 125 mg/l ve çökelme süresi 90 dakika olarak belirlenmiştir. KOİ giderimi incelendiğinde ise 200 mg/l boya konsantrasyonu, 200 mg/l çitosan konsantrasyonu ve 30 dakika çökelme süresinde en yüksek KOİ giderme verimi (%60) elde edilmiştir.

The Use of Box-Wilson Statistical Design Method in the Treatment of Dyeing Wastewaters with Chitosan Coagulation

The most important pollutant sources in the textile industry wastewater are the dyes used in the process. In this study, coagulation method with chitosan was applied for color and COD removal from dyeing wastewater. In the experimental studies, the Box Wilson statistical design method was used and the effects of dye concentration, chitosan concentration and precipitation time after coagulationflocculation on color and COD removal efficiency were investigated. The dye concentration was selected to be 50-200 mg/l, chitosan concentration 50-200 mg/l and precipitation time 30-120 minutes. The highest color removal efficiency (70%) was determined as 50 mg/l of dye concentration, 125 mg/l of chitosan concentration and 90 minutes of precipitation time. When the COD removal was examined, the highest COD removal efficiency (60%) was obtained at 200 mg/l of dye concentration, 200 mg/l of chitosan concentration and 30 minutes of precipitation time.

___

  • Patel, H., Vashi, R.T. 2012. Removal of Congo Red Dye from its Aqueous Solution Using Natural Coagulants, Journal of Saudi Chemical Society, Cilt. 16, s. 131–136. DOI:10.1016/j.jscs.2010.12.003.
  • Gomez, V., Larrechi, M.S., Callao, M.P., 2007. Kinetic and Adsorption Study of Acid Dye Removal using Activated Carbon, Chemosphere, Cilt. 69, s. 1151–1158. DOI: 10.1016/j.chemosphere.2007.03.0 76.
  • Perkowski, J., Kos, L., Ledakowicz, S., (1996). Application of Ozone in Textile Wastewater Treatment, Ozone: Science & Engineering, Cilt. 18, s. 73-85. DOI: 10.1080/01919519608547342.
  • Szyguła, A., Guibala, E., Ruizb, M. and Sastrec, A.M. 2008. The Removal of Sulphonated Azo-Dyes by Coagulation with Chitosan, Colloids and Surfaces A: Physicochemical Engineering Aspects: Cilt. 330, s. 219–226. DOI: 10.1016/j.colsurfa.2008.08.001.
  • Dos Santos, A.B., Cervantes, F.J., Van Lier, J.B. 2007. Review Paper on Current Technologies for Decolourisation of Textile Wastewaters: Perspectives for Anaerobic Biotechnology, Bioresource Technology, Cilt. 98, s. 2369–2385. DOI: 10.1016/j.biortech.2006.11.013.
  • Lin S., Lo C. 1997. Fenton Process for Treatment Desizing Wastewater, Water Research, Cilt. 31(8), s. 2050 – 2056. DOI: 10.1016/S0043-1354(97)00024-9.
  • Akdemir, E. 2012. A Statistical Experiment Design Approach for Decolorization of Textile Dyestuff by Coagulatıon with Chitosan, Fresenius Environmental Bulletin, Cilt. 21 (6), s. 1461-1467.
  • Szygula, A. Guibal, E., Palacin, M, Ruiz, m., Sastre, A.M. 2009. Removal of an Anionic Dye (Acid Blue 92) by Coagulation– Flocculation using Chitosan, Journal of Environmental Management, Cilt. 90(10), s. 29792986. DOI: 10.1016/j.jenvman.2009.04.002.
  • Asif, M.B., Majeed, N., Iftekhar, S., Habib, R. Fida, S., Tabraiz, S. 2016. Chemically Enhanced Primary Treatment of Textile Effluent using Alum Sludge and Chitosan, Desalination and Water Treatment, Cilt. 57(16), s. 7280-7286. DOI: 10.1080/19443994.2015.1015448.
  • American Public Health Association, American Water Works Association, Water Pollution Control Federation. 1992. Standart Methods for the Examination of Water and Wastewater, 18th Edition, Washington.
  • García, J. L., Lehocký, M., Humpolíček, P., Sáha, P. 2014. HaCaTKeratinocytes Response on Antimicrobial Atelocollagen Substrates: Extent of Cytotoxicity, Cell Viability and Proliferation, Journal of Functional Biomaterials, Cilt. 5, s. 43 -57. DOI: 10.3390/jfb5020043.
  • http://www.worlddyevariety.com /reactive-dyes/reactive-red195.html, (Erişim Tarihi: 21.01.2007).
  • Guibal, E. 2004. Interactions of Metal Ions with Chitosan Based Sorbents: A Review, Separation and Purification Tecnology, Cilt. 38, s. 43–74. DOI: 10.1016/j.seppur.2003.10.004.
  • Hassan, M.A.A, Li, T.P., Noor, Z.Z. 2009. Coagulation and Flocculation Treatment of Wastewater in Textile Industry using Chitosan, Journal of Chemical and Natural Resources Engineering, Cilt.4(1) s.43-53.
  • Patel, H., Vashi, R.T. 2013. Comparison of Naturally Prepared Coagulants for Removal of COD and color from Textile Wastewater, Global NEST Journal, Cilt. 15(4), s. 522-528.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi