SU ARITIMI İÇİN ETKİLİ BİR YÖNTEM OLARAK KAPASİTİF DEİYONİZASYON TEKNOLOJİSİNİN GELİŞTİRİLMESİ

: Son yıllarda, kapasitif deiyonizasyon (KDI) adı verilen ve kapasitörler aracılığı ile sudan iyonların giderilmesi amacıyla geliştirilen bu teknoloji su arıtımı için kullanılan yeni teknolojiler arasında öne çıkmaktadır. Bu çalışma kapsamında sudan iyonların giderilmesi için süperkapasitör elektrotların kullanılması ve KDI teknolojisinin geliştirilmesine katkıda bulunulması hedeflenmiştir. Bu amaç doğrultusunda, grafen bazlı süperkapasitör elektrotlar geliştirilmiş ve deiyonizasyon için bu yeni malzemelerin kullanımı detaylı olarak araştırılmıştır. Elektrotların iyon tutma özellikleri farklı elektrik potansiyelleri ve debilerde analiz edilmiştir. Elde edilen sonuçlara göre 20mL/dakika akış hızı ve 2,0V elektrik potansiyel uygulanarak geliştirilen grafen elektrotlar ile 12,5µmol/g iyon adsorpsiyon kapasitesine ulaşılmıştır. Sonuçlarımız doğrultusunda ticari olarak satın alınabilen grafen malzemesi ile sudan iyonların giderilmesi amacı ile elektrot üretmenin mümkün olduğu görülmüştür

ENHANCING CAPACITIVE DEIONIZATION TECHNOLOGY AS AN EFFECTIVE METHOD FOR WATER TREATMENT

In recent years, capacitive deionization (CDI) is reported as one of the emerging technologies developed with the purpose of water desalination. This work aims the use of supercapacitor electrodes for efficient removal of ions from water and contributes develepment of CDI technology. Towards the purpose, graphene based supercapacitor electrodes were developed and the use of these new materials for deionization purpose was explored in detail. The ion sorption behavior of the graphene electrodes developed from a commercially available graphene was analyzed at different electrical potentials and flow rates. Impact of operating parameters on sorption capacity was determined. At 20mL/min flow rate and 2.0V potential, the electrosorptive capacity of commercially available graphene electrodes could reach 12.5µmol/g. Our results showed that it is possible to develop supercapacitors from commercially available graphene material for the purpose of deionization

___

  • Myint M.T.Z, Al-Harthi S.H, Dutta J. Brackish Water Desalination by Capacitive Deionization Using Zinc Oxide Micro/nanostructures Grafted on Activated Carbon Cloth Electrodes, Desalination, Cilt. 344, s.236-242. 1016/j.desal.2014.03.037 DOI:
  • Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel P.M. 2013.
  • Review on the Science and Technology of Water Desalination by Progress in Materials Science, Cilt. , 1016/j.pmatsci.2013.03.005 DOI:
  • Li H, Zou L, Pan L, Sun Z. 2010.
  • Novel Graphene-Like Electrodes for Environmental Technology, Cilt. 44, s.8692-8697. DOI: 10.1021/es101888j &
  • Anderson M.A, Cudero A.L, Palma J. Capacitive Deionization as an Electrochemical Means of Saving Energy and Delivering Clean Water. Comparison to Present Desalination Practices: Will It Compete?, Electrochimica Acta, Cilt. 1016/j.electacta.2010.02.012 DOI:
  • AlMarzooqi F.A, Al Ghaferi A.A, Saadat I, Hilal N. 2014. Application of Capacitive Deionisation in water desalination:
  • Desalination, Cilt. 342, s.3-15. DOI: 1016/j.desal.2014.02.031
  • Bennett A. 2013. 50th Anniversary:
  • Desalination: 50 Years of Progress, Filtration+Separation, Cilt. 50, s.32- (13)70128-9
  • Subramani A, Jacangelo J.G. 2015. Emerging
  • Technologies for Water Treatment: A Critical Review, Water Research, Cilt. 1016/j.watres.2015.02.032 DOI:
  • Garcia-Quismondo E, Santos C, Lado J, Palma J, Anderson M.A. Optimizing the Energy Efficiency Deionization Reactors Working under Environmental Technology, s.11866−11872. 1021/es4021603 Capacitive Real-World Conditions, Science Cilt. , DOI:
  • Welgemoed T.J, Schutte C.F. 2005. Capacitive TechnologyTM: desalination
  • Desalination, Cilt. 183, s.327-340. DOI: 10.1016/j.desal.2005.02.054
  • Li Z, Song B, Wu Z, Lin Z, Yao Y, Moon K.S, Wong C.P. 2014. 3D porous graphene with ultrahigh surface area for microscale capacitive deionization, Nano Energy, Cilt. 11, s.711-718. DOI: 1016/j.nanoen.2014.11.018
  • Wang C, Song H, Zhang Q, Wang B, Li A. 2015. Parameter Optimization
  • Based on Capacitive Deionization for Highly Efficient Desalination of Domestic Wastewater Biotreated Effluent and the Fouled Electrode Regeneration, Desalination, Cilt. , 1016/j.desal.2015.03.025 DOI:
  • Bai Y, Huang Z.H, Yu X.L, Kang F. Graphene Oxide-embedded Porous Carbon Nanofiber Webs by Electrospinning for Capacitive Deionization, Colloids and Surfaces A: Engineering Aspects, Cilt. 444, s.153-158. 1016/j.colsurfa.2013.12.053 DOI: Oren Y.
  • Deionization (CDI) for Desalination and Water Treatment — Past, Present and Future (a Review), Desalination, Cilt. 228, s.10-29. DOI: 10.1016/j.desal.2007.08.005
  • Conway B.E. 1999. Electrochemical Supercapacitors:
  • Fundamentals and Technological Applications, New York: Kluwer Academic/Plenum. 1007/978-1-4757-3058-6 DOI:
  • An K.H, Kim W.S, Park Y.S, Moon J.M, Bae D.J, Lim S.C, Lee Y.S, Lee Y.H. Properties Supercapacitors Walled Electrodes, Advanced Functional Materials, Cilt. 11, s.387-392. DOI: 1002/1616- (200110)11:53.3.CO;2-7
  • Xia J, Chen F, Li J, Tao N. 2009.
  • Measurement of the Quantum Capacitance of Graphene, Nature Nanotechnology, Cilt. 4, s.505-509. DOI: 10.1038/nnano.2009.177
  • Li H, Lu T, Pan L, Zhang Y, Sun Z. Electrosorption behavior of graphene in NaCl solutions, Journal of Materials Chemistry, Cilt. 19, s.6773-6779. 1039/b907703k DOI:
  • Li H, Zou L, Pan L, Sun Z. 2010.
  • Using graphene nano-flakes as electrodes to remove ferric ions by Seperation Technology, Cilt. 75, s.8-14. DOI: 1016/j.seppur.2010.07.003
  • Wang Z, Dou B, Zheng L, Zhang G, Liu Z, Hao Z. 2012. Effective desalination deionization graphene nanocomposite as novel electrode material, Desalination, Cilt. 1016/j.desal.2012.05.028 DOI:
  • Zhang D, Wen X, Shi L, Yan T, Zhang capacitive graphene/mesoporous composites, Nanoscale, Cilt. 4, s.5440-5446. 1039/C2NR31154B Enhanced of carbon DOI:
  • Lado J.J, Pérez-Roa R.E, Wouters J.J, Tejedor-Tejedor M.I, Anderson M.A. operational parameters for a capacitive deionization reactor employing asymmetric electrodes, Separation Technology, Cilt. 133, s.236-245. DOI: 1016/j.seppur.2014.07.004 of Purification
  • Lado J.J, Pérez-Roa R.E, Wouters J.J, Tejedor-Tejedor M.I, Federspill C, Anderson M.A. 2015. Continuous cycling of an asymmetric capacitive deionization system: An evaluation of the electrode performance and stability, Journal of Environmental
  • Chemical Engineering, Cilt. 3, s.2358-2367. 1016/j.jece.2015.08.025 DOI: