Fotovoltaik Güneş Pillerinde Kullanılan ZnO ve CuO Filmlerinin SILAR Yöntemi ile Üretilmesi ve Karakterizasyonu

Bu çalışmada ZnO ve CuO filmleri pratik ve ekonomik bir teknik olan SILAR (Successive Ionic Layer Adsorption and Reaction) yöntemi ile üretilmiştir. Filmlerin yapısal, optik, elipsometrik, yüzeysel ve elektrik özellikleri sırası ile XRD, UV spektroskopisi, Spektroskopik Elipsometre (SE), Atomik Kuvvet Mikroskobu (AFM) ve dört-uç tekniği kullanılarak incelenmiştir. Filmlerin yasak enerji aralıkları, optik metot kullanılarak 3,22 eV-1,72 eV olarak hesaplanmıştır. Spektroskopik elipsometre (SE) tekniği ile filmlerinin kalınlıkları ve bazı optik sabitleri (sönüm katsayısı ve kırılma indisi) belirlenmiştir. Ayrıca, filmlerin üç boyutlu yüzey görüntüleri incelenmiş ve ortalama yüzey pürüzlülük değerleri 38 nm and 60 nm olarak tespit edilmiştir. Filmlerin elektriksel özdirenç değerleri ve iletim tipi sırasıyla dört-uç metodu ve sıcak uç tekniği kullanılarak belirlenmiştir.

The Production of ZnO and CuO Films by SILAR Method and Characterization for Use in Photovoltaic Solar Cells

In this study; ZnO and CuO films were produced by SILAR (Successive Ionic Layer Adsorption and Reaction) technique which is a practically and economic. The films of structural, optical, ellipsometric, surface and electrical properties were determined by XRD diffactometer, UV spectrophotometer, Spectroscopic Ellipsomery (SE), Atomic Force Microscope (AFM), Four-Probe, respectively. The band gaps of films were calculated as 3.22 eV-1.72 eV using optic method. The thickness and some optic constants (extinction coefficient and refractive index) of films were investigated by SE. Also, the three dimensional surface images of films were obtained and the average surface roughness values were determined as 38 and 60 nm. The electrical resistivity values and conduction mechanism were investigated by using four-probe and hot-probe technique, respectively.

___

  • [1] Terasako T., Murakami T., Hyodou A., Shirakata S. 2015. Structural and electrical properties of CuO films and n-ZnO/p-CuO heterojunctions prepared by chemical bath deposition based technique, Solar Energy Materials & Solar Cells, Cilt. 132, s. 74-79. DOI: 10.1016/j.solmat.2014.08.023
  • [2] Fahrenbruch A.L. 1997. II-VI Compounds in solar energy conversion, Journal of Crystal Growth, Cilt. 39, s. 73-91. DOI:10.1016/0022-0248(77)90156- 7
  • [3] Singh I., Kaur G., Bedi R.K. 2011. CTAB assited growth and characterization of nanocrystalline CuO films by ultrasonic spray pyrolysis technique, Applied Surface Science, Cilt., 257, No. 22, s. 9546- 9554. DOI: 10.1016/j.apsusc.2011.06.061
  • [4] Hu X., Gao F., Xiang Y., Wu H., Zheng X., Jiang J., Li J., Yang H., Liu S. 2016. Influence of oxygen pressure on the structural and electrical properties of CuO thin films prepared by pulsed laser deposition, Materials Letters, Cilt. 176, s. 282-284. DOI:10.1016/j.matlet.2016.04.055
  • [5] Saadaldin N., Alsloum M.N., Hussain N. 2015. Preparing of Copper oxides Thin Films by Chemical Bath Deposition (CBD) for Using in Environmental Application, Energy Procedia, Cilt. 74, s. 1459-146. DOI: 10.1016/j.egypro.2015.07.794
  • [6] Mbulanga C. M., Urgessa Z. N., Tankio Djiokap S.R., Botha J.R., Duvenhage M. M., Swart H. C. 2016. Surface characterization of ZnO nanorods grown by chemical bath deposition, Physica B: Condensed Matter, Cilt. 480, s. 42-47. DOI: 10.1016/j.physb.2015.07.016
  • [7]Bedia A., Bedia F.Z., Aillerie M., Maloufi N., Benyoucef B. 2015. Morphological and optical properties of ZnO thin films prepared by spray pyrolysis on glass substrates at various temperatures for integration in solar cell, Energy Procedia, Cilt. 74, s. 529-538. DOI: 0.1016/j.egypro.2015.07.740
  • [8] Cachoncinlle C., Hebert C., Perrière J., Nistor M., Petit A., Millon E. 2015. Random lasing of ZnO thin films grown by pulsed-lase deposition, Applied Surface Science, Cilt. 336, s. 103-107. DOI: 10.1016/j.apsusc.2014.09.186
  • [9] Jayaraman V. K., Kuwabara Y. M., Álvarez A. M., Amador María de la luz O. 2016. Importance of substrate rotation speed on the growth of homogeneous ZnO thin films by reactive sputtering, Materials Letters, Cilt. 169, s. 1-4. DOI: 10.1016/j.matlet.2016.01.088
  • [10] Maleki-Ghaleh H., Shahzadeh M., Hoseinizadeh S. A., Arabi A., Aghaie E., Siadati M. H. 2016. Evaluation of the photo-electro-catalytic behavior of nano-structured ZnO films fabricated br electrodepositon process, Materials Letters, Cilt. 169, s. 140-143. DOI: 10.1016/j.matlet.2016.01.090
  • [11] Armelao L., Barreca D., Bertapelle M., Bottaro G., Sada C., Tondello E. 2003. A sol-gel approach to nanophasic copper oxide thin films, Thin Solid Films, Cilt. 442, No. 1-2, s. 48-52. DOI: 10.1016/S0040- 6090(03)00940-4
  • [12] Gould R.D., Rahman M.S. 1981. Power-law currents in some ZnOSn composite materials, Applied Physics, Cilt. 14, s. 79-89. DOI: 10.1088/0022-3727/14/1/011
  • [[13] Chen A., Long H., Li X., Li Y., Yang G., Lu P. 2009. Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition, Vacuum, Cilt. 83, s. 927-930. DOI: 10.1016/j.vacuum.2008.10.003
  • [14] Kumar A. K., Murugesan S., Suresh S., Raj S. P. 2013. Nanostructured CuO thin films prepared through sputtering for solar selective absorbers, Journal of Solar Energy, Article ID 147270, s.1-6. DOI: 10.1155/2013/147270
  • [15] Maruyama T. 1998. Copper Oxide Thin Films Prepared from Copper Dipivaloylmethanate and Oxygen by Chemical Vapor Deposition, Japanese Journal of Applied Physics Cilt. 37 (7), s. 4099-4102. DOI: 10.1143/JJAP.37.4099
  • [16] Ray S. C. 2001. Preparation of copper oxide thin film by the solgel-like dip technique and study of their structural and optical properties, Solar Energy Materials & Solar Cells, Cilt. 68, s. 307-312. DOI: 10.1016/S0927- 0248(00)00364-0
  • [17]Al-Kuhaili M. F. 2008. Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O), Vacuum, Cilt. 82, s. 623- 629. DOI: DOI: 10.1016/j.vacuum.2007.10.004
  • [18] Muiva C. M., Maabong K., Moditswe C. 2016. CuO nanostructured thin films synthesised by chemical bath deposition on seed layers deposited by successive ionic layer adsorption and reaction and chemical spray pyrolysis techniques, Thin Solid Films, Cilt. 616, s. 48-54. DOI: 10.1016/j.tsf.2016.07.061
  • [19] Thankalekshmi R. R., Rastogi A. C. 2014. Synthesis and properties of Zn(Cu-Mn)O dilute magnetic semiconductor thin films by chemical spray pyrolysis technique, Journal of Analytical and Applied Pyrolysis, Cilt 107, s. 183- 190. DOI: DOI: 10.1016/j.jaap.2014.02.020
  • [20] Singh I., Kaur G., Bed R. K. 2011. CTAB assisted growth and characterization of nanocrystalline CuO films by ultrasonic spray pyrolysis technique, Applied Surface Science, Cilt. 257 (22), s. 9546-9554. DOI: 10.1016/j.apsusc.2011.06.061
  • [21] Morales J., Sanchez L., Martin F., Romos-Barrado J.R., Sanchez M. 2004. Nanostructured CuO Thin Film Electrodes Prepared By Spray Pyrolysis: A Simple Method For Enhancing The Electrochemical Performance of CuO in Lithium Cells, Electrochimica Acta, Cilt. 49, s. 4589. DOI:10.1016/j.electacta.2004.05.0 12
  • [22] Derin H., Kantarli K., 2002. Optical characterization of thin thermal oxide films on copper by ellipsometry, Applied Physics A, Cilt. 75, s. 391-395. DOI: 10.1007/s003390100989
  • [23] Papadimitropoulos G., Vourdas N., Vamvakas V. E., Davazoglou D. 2005. Deposition and characterization of copper oxide thin films, Journal of Physics: Conference Series, Cilt. 10, s. 182- 185. DOI: 10.1088/1742- 6596/10/1/045
  • [24] Sasagawa M., Nosaka Y. 2002. Electrochemical evaluation of the roles of chelating reagents in Cd ion adsorption on CdS surface for the successive ionic layer adsorption and reaction (SILAR) deposition, Journal of Electroanalytical Chemistry, Cilt. 536, s. 141-144. DOI: 10.1016/S0022-0728(02)01213-5
  • [25] Patil U. M., Gurav K. V., Joo Oh-Shim, Lokhande C. D. 2009. Synthesis of photosensitive nanograined TiO2 thin films by SILAR method, Journal of Alloys and Compounds, Cilt. 478, No. 1, s. 711-715. DOI:10.1016/j.jallcom.2008.11.160
  • [26]Gokul B., Matheswaran P., Sathyamoorthy R. 2013. Influence of annealing on ohysical properties of CdO thin films prepared by SILAR method, Journal of Materials Science & Technology, Cilt. 29, No. 1, s. 17-21. DOI: 10.1016/j.jmst.2012.11.015
  • [27] Tatar D. Spray pyrolysis yöntemi ile farklı altlık sıcaklığında elde edilen Sn2O ve SnO2:F ince filmlerin bazı fiziksel özelliklerine, altlık sıcaklığının etkisinin araştırılması, Doktora Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, 2015.
  • [28] Connoly R. 2003. Introduction to xray powder diffraction, Springer.
  • [29]Cullity B. D. 2001. Stock S.R. Elements of X-ray diffraction (3rd ed.), Prentice Hall.
  • [30]Joseph B., Gopchandran K.G., Thomas P.V., Koshy P., Vaidyan, V. K. 1999. A study on the chemical spray deposition of zinc oxide thin films and their structural and electrical properties, Materials Chemistry and Physics, Cilt. 58, s. DOI: 71-77. 10.1016/S0254- 0584(98)00257-0
  • [31] Williamson G. K., Smallman R. E. 1956. III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum, Phil Mg., Cilt. 1, No.1, s. 134-34. DOI:10.1080/1478643560823807 4
  • [32] Zhao Z., Morel D. L., Ferekides C. S. 2002. Electrical and optical properties of thin-doped CdO films deposited by atmospheric metalorganic chemical vapour deposition, Thin Solid Films, Cilt. 413, s. 203-211. DOI: DOI: 10.1016/S0040-6090(02)00344-9
  • [33] Vigil O., Vaillant L., Cruz F., Santana G., Morales-Acevedo A., ContrerasPuente G. 2000. Spray pyrolysis deposition of cadmium-zinc oxide thin films, Thin Solid Films, Cilt. 361-362, s. 53-55. DOI: 10.1016/S0040-6090(99)01061-5
  • [34] Bayansal F., Şahin B., Yüksel M., Çetinkara H.A. 2013. SILAR-based growth o nanostructured CuO thin films from alkaline baths containing saccharin as assistive, Material Letters, Cilt. 98, s. 197- 200. DOI: 10.1016/j.matlet.2013.02.030
  • [35] Akaltun Y. 2015. Effect of thickness on the structural and optical properties of CuO thin films grown by successive ionic layer adsorption and reaction, Thin Soldis Films, Cilt. 594, s. 30-34. DOI: 10.1016/j.tsf.2015.10.003
  • [36] Jayakrishnan R., Kurian A. S., Vrun G. N., Joseph M. R. 2016. Effect of vacuum annealing on the photoconductivity of CuO thin films grown using sequential ionic layer adsorption reaction, Material Chemistry and Physics, Cilt. 180, s. 149-155. DOI:10.1016/j.matchemphys.2016. 05.055
  • [37] Rajkumar P.V., Ravichandran K. , Baneto M. , Ravidhas C., Sakthivel B., Dineshbabu N. 2015. Enhancement of optical and electrical properties of SILAR deposited ZnO thin films through fluorine doping and vacuum annealing for photovoltaic applications, Materials Science in Semiconductor Processing, Cilt. 35, s. 189-196. DOI: 10.1016/j.mssp.2015.03.010
  • [38] Rahman M. A., Phillips M. R., ThatTon C. 2017. Efficient multicoloured Li-doped ZnO thin films fabricated by spray pyrolysis, Journal of Alloys and Compounds, Cilt. 691, s. 339-342. DOI: 10.1016/j.jallcom.2016.08.242
  • [39] Dhruvashi, Shishodia P. K. 2016. Effect of cobalt doping on ZnO thin films deposited by sol-gel method, Thin Solid Films, Cilt. 612, s. 55-60. DOI: 10.1016/j.tsf.2016.05.028
  • [40] Chand P., Gaur A., Kumar Ash., Gaur U. K. 2014. Structural and optical study of Li doped CuO thin films on Si (1 0 0) substrate deposited by pulsed laser deposition, Applied Surface Science, Cilt. 307, s. 280- 286. DOI: 10.1016/j.apsusc.2014.04.027
  • [41] Wang F., Wang Y., Chen L., Wei B., Hao S. 2016. Effects of surface oxygen on carbon films synthesized by plasma enhanced chemical vapor deposition, Material Letters, Cilt. 182, s. 52-54. DOI: 10.1016/j.matlet.2016.06.082
  • [42] Baviskar K. P., Nikam P. R., Gargote S. S., Ennaoui A., Sankpal B. R. 2013. Controlled synthesis of ZnO nanostructures with assorted morphologies via simple solution chemistry, Journal of Alloys and Compounds, Cilt. 551, s. 233-242. DOI:10.1016/j.jallcom.2012.10.052
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi
Sayıdaki Diğer Makaleler

Fermentatif Hidrojen Üretiminin ?-Selüloz İle Anaerobik Çamur Ve Sığır Gübresi Karışımlarını Kullanarak Değerlendirilmesi

SERPİL ÖZMIHÇI

HAVA KİRECİ HARCI KULLANILARAK ÜRETİLEN TARİHİ YIĞMA DUVARLARDA BÜNYESEL MODELLEME

Bilge DORAN, Selen AKTAN

UŞAK İLİ ÇEVRESİNDEKİ DEPREMLERİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ

Elif Çağda Kandemir MAZANOĞLU

Kütahya/Altıntaş Grafitlerinin Kaba Flotasyon Parametrelerinin Box-Behnken Deney Tasarımı Kullanılarak Optimizasyonu ve Modellenmesi

ÖZCAN ÖNEY, SELÇUK SAMANLI

EVAPORASYON PROSESİNİN MAYA ENDÜSTRİSİ ATIKSU KARAKTERİZASYONU VE ARITILABİLİRLİĞİNE ETKİSİ

RECEP KAAN DERELİ, HALE ÖZGÜN ERŞAHİN, MUSTAFA EVREN ERŞAHİN, İSMAİL KOYUNCU, MAHMUT ALTINBAŞ, İzzet ÖZTÜRK

KÜTAHYA/ALTINTAŞ GRAFİTLERİNİN KABA FLOTASYON PARAMETRELERİNİN BOX-BEHNKEN DENEY TASARIMI KULLANILARAK OPTİMİZASYONU VE MODELLENMESİ

Özcan ÖNEY, Selçuk SAMANLI

FONONİK KRİSTAL KAPLAMA İLE GÖSTERİ SALONLARINDA AKUSTİK YALITIMIN SAYISAL İNCELENMESİ

Nurettin KÖRÖZLÜ

Uşak İli Çevresindeki Depremlerin Yapay Sinir Ağları ile Modellenmesi

Elif Çağda KANDEMİR MAZANOĞLU

SU ARITIMI İÇİN ETKİLİ BİR YÖNTEM OLARAK KAPASİTİF DEİYONİZASYON TEKNOLOJİSİNİN GELİŞTİRİLMESİ

Derya DURSUN, Selin OZKUL, Recep YUKSEL, Husnu Emrah UNALAN

SPRAY PYROLYSİS YÖNTEMİYLE ÜRETİLEN IN2O3 FİLMLERİNİN YAPISAL VE OPTİK ÖZELLİKLERİ

Evren TURAN, Esra ZEYBEKOĞLU