Triklosanın Foto-Fenton Oksidasyon Yöntemi ile Parçalanması

Triklosan, antibakteriyel kişisel bakım ürünlerinde en çok kullanılan aktif maddelerden biridir ve son yıllarda kullanımı artmıştır. Bu çalışmada, triklosanın foto-Fenton yöntemi ile arıtılması ve yan ürünlerinin oluşumu araştırılmıştır. Triklosan, H2O2 ve Fe(II) konsantrasyonlarının triklosan giderimine olan etkileri, Box-Behnken istatistiksel deney tasarımı ve yüzey cevabı analizi kullanılarak araştırılmıştır. Triklosan derişiminin triklosan gideriminde H2O2 ve Fe(II) derişimlerinden daha etkin olduğu gözlenmiştir. Triklosan'ın tamamen parçalanması bir saatte gerçekleşirken tamamen mineralizasyonu gerçekleşmemiştir. 2,4Diklorofenol ve 2,4,6-Triklorofenol gibi bazı ara bileşiklerin oluştuğu gözlenmiştir. Foto-Fenton prosesinde, en yüksek triklosan giderimi (%98.5) için H2O2/Fe(II)/TCS oranının 50/2/0.1 olduğu saptanmıştır.

Degradation of Triclosan by Photo-Fenton Oxidation

Triclosan is one of the most used active ingredients in antibacterial personal care products and its usage increased in recent years. Triclosan has recently attracted the attention researchers from the fields of water treatment due to its existence in water environments. This study has been executed to investigate the removal of triclosan with photo-Fenton process and to observe by-product formation after oxidation. Effects of operational parameters namely the concentrations of Triclosan, H2O2 and Fe(II) on oxidation of triclosan were investigated by using Box-Behnken statistical experiment design and the surface response analysis. It was found that the triclosan concentration has a more profound effect than H2O2 and Fe(II) concentrations for removal of triclosan in the aqueous solution. Complete removal of triclosan was accomplished within a hour, however, complete mineralization was not occurred even within sixty minutes indicating formation of some intermediate compounds such as 2,4-Dichlorophenol and 2,4,6-Trichlorophenol. Optimal H2O2/Fe(II)/TCS ratio resulting by maximum triclosan removal (98.5%) was found to be 50/2/0.1, respectively.

___

  • [1] Bedoux, G., Roig, B., Thomas, O., Dupont, V., Le Bot, B. 2012. Occurrence and toxicity of antimicrobial triclosan and byproducts in the environment, Environ Science Pollution Res. Vol.19, page.1044-1065.
  • [2] Reiss, R., Mackay, N., Habig, C., Griffin, J. 2002. An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States, Environmental Toxicology and Chemistry, Vol.21, page.2483-2492.
  • [3] NICNAS (Chemicals Notification and Assessment Scheme), Priority Existing Chemical Assessment Report No. National Industrial 30 Triclosan, Australia, 2009.
  • [4] Scientific Committee on Consumer Products (SCCP), Opinion on: Triclosan Retrieved from http://ec.europa.eu/health/ph_risk/com mittees/04_sccp/docs/sccp_o_166.pdf on October, 02 2015.
  • [5] Perez, A.L., De Sylor., M.A. Slocombe, A.J. Lew, M.G. 2013. Triclosan occurrence in freshwater systems in the united states (1999-2012): a meta analysis, Environmental Toxicology and Chemistry, Vol.32 (7), page.1479-1487
  • [6] Singer, H., Muller, S., Tixier, C., Pillonel, L. 2002. Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: Field measurements in wastewater treatment plants, surface waters, and lake sediments, Environmental Science and Technology, Vol.36, page. 4998-5004.
  • [7] Halden, R. U., Paul, D. H. 2005. Cooccurrence of triclocarban and triclosan in U.S. water resources, Environmental Science and Technology, Vol.39, page. 1420-1426.
  • [8] Peng, X., Yu, Y., Tang, C., Tan, J., Huang, Q., Wang, Z. 2008. Occurrence of steroid estrogens, endocrine-disrupting phenols and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China, Science of Total Environment, Vol.397, page. 158-166.
  • [9] Zhao, J. L., Ying, G. G., Liu, Y. S., Chen, F., Yang, J. F., Wang, L. 2010. Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: From source to the receiving environment, Journal of Hazardous Material, Vol.179, page. 215-222.
  • [10] Bedoux, G., Roig, B., Thomas, O., Dupont, V. Le Bot, B. 2012. Occurrence and toxicity of antimicrobial triclosan and byproducts in the environment, Environmental Science Pollution Research, Vol.19, page.1044-1065.
  • [11] Lindström, A., Buerge, I. J., Poiger, T., Bergqvist, P. A., Müller, M. D., Buser, H. R. 2002. Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater, Environmental Science and Technology, Vol.36, page. 2322- 2329.
  • [12]. Ramaswamy, B. R., Shanmugam, G., Velu, G., Rengarajan, B. & Larsson, D. G. J. (2011). GC-MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers, Journal of Hazardous Materials, Vol.186, page.1586-1593.
  • [13] Tixier, C., Singer, H. P., Canonica, S., Stephan, R. 2002. Phototransformation of triclosan in surface waters: A relevant elimination process for this widely used biocide laboratory studies, field measurements, and modeling, Environmental Science and Technology, Vol.36, page.3482- 3489.
  • [14]Sanchez-Prado, L., Llompart, M., Lores, M., Fernández-Alvarez, M., García-Jares, C., Cela, R. 2006. Further research on photo-SPME of triclosan, Analytical and Bioanalytical Chemistry, Vol.384, page.1548-1457.
  • [15] Canosa, P., Morales, S., Rodríguez, I., Rubí, E., Cela, R., Gómez M. 2005. Aquatic degradation of triclosan and formation of toxic chlorophenols in presence of low concentrations of free chlorine, Analytical and Bioanalytical Chemistry, Vol.383, page.1119-1126.
  • [16] Latch, D.E., Packer, J.L., Arnold, W.A., McNeill, K. 2003. Photochemical conversion of triclosan to 2,8- dichlorodibenzo-p-dioxin in aqueous solution, Journal of Photochemistry and Photobiology A: Chemistry, Short Communication, Vol.158, page.630- 666.
  • [17] Ferrer, I. Mezcua, M. Jose Gomez, M., Thurman, M.E., Aguera, A., Hernando, M.D., Fernandez-alba, A.R. 2004. Liquid chromatography/time-of-flight mass spectrometric analyses for the elucidation of the photodegredation products of triclosan in wastewater samples, Rapid Communications in Mass Spectrometry, Vol.18, page.443- 450.
  • [18] Esplugas, S., Yue, P.L., Pervez, M.I. 1994. Degradation of 4-chlorophenol by photolytic oxidation, Water Research, Vol.28 (6), page.1323-1328.
  • [19] Masten, S.J., Davies, S.H.R. 1994. The use of ozonation to degrade organic contaminants in wastewaters, Env.Sci.Technol. Vol.28 (1), page.180A-185A.
  • [20] Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B. 1988. Critical review of data constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solutions, J. Phys. Chem. Ref. Data, Vol.17(2), page.513-586.
  • [21] Legrini, O., Oliveros, E., Braun, A.M. 1993. Photochemical processes for water treatment, Chem. Rew. Vol.93 (2), page.671-698.
  • [22] Rule, K.L., Ebbett, V.R., Vikesland, P.J. 2005. Formation of chloroform and chlorinated organics by freechlorine-mediated oxidation of triclosan, Environ. Sci. Technol. Vol.39, page. 3176-3185.
  • [23] Boza, A., De la Cruz, Y., Jordan, G., Jauregui-Haza, U., Aleman, A., Caraballo, I. 2000. Statistical optimization of a sustained-release matrix tablet of lobenzarit disodium, Drug Dev Ind Pharm. Vol.26, page.1303-1307.
  • [24] Singh, S.K., Dodge, J., Durrani, M.J., Khan, M.A. 1995. Optimization and characterization of controlled release pellets coated with experimental latex: I. Anionic drug, Int J Pharm. Vol.125, page.243-255.
  • [25] Sanchez-Lafuente, C., Furlanetto, S., Fernandez-Arevalo, M. 2002. Didanosine extended-release matrix tablets: optimization of formulation variables using statistical experimental design, Int J Pharm. Vol.237, page.107-118.
  • [26] Ragonese, R., Macka, M., Hughes, J., Petocz, P. 2002. The use of the BoxBehnken experimental design in the optimisation and robustness testing of a capillary electrophoresis method for the analysis of ethambutol hydrochloride in a pharmaceutical formulation, J Pharm Biomed Anal. Vol.27, page.995-1007.
  • [27] Hamed, E., Sakr, A. 2001. Application of multiple response optimization technique to extended release formulations design, J Control Release, Vol.73, page.329-338.
  • [28] Hsueh, C.L., Huang, Y.H., Wang, C.C., Chen, C.Y. 2005. Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system, Chemosphere, Vol.58, page.1409- 1414.
  • [29] Charles, R.H., Kennneth, Jr V.T. 1999. Fundamental concepts in the design of experiments, Oxford: University Press.
  • [30] Torrades, F., Perez, M., Mansilla, H.D., Peral, J. 2003. Experimental design of Fenton and photo-Fenton reactions for the treatment of cellulose bleaching effluents, Chemosphere, Vol.53 (10), page.1211-1220.