Arttırılmış Gerçeklikte İşaretçi Tabanlı Takip Sistemleri Üzerine Bir Literatür Çalışması ve Tasarlanan Çok Katmanlı İşaretçi Modeli

Arttırılmış gerçeklik, bilgisayarlı görü teknikleri kullanılarak, bilgisayar ortamında oluşturulan sanal içeriklerin, gerçek görüntülenebilmesine olanak sağlayan bir teknolojidir. Takip yöntemleri arttırılmış gerçeklik uygulamalarında önemli bir rol oynamaktadır. Bu çalışma kapsamında, arttırılmış gerçeklikte işaretçi tabanlı takip sistemleri üzerine bir literatür çalışması yapılmakta ve tasarlanan çok katmanlı işaretçi modeli tanıtılmaktadır. Çok katmanlı işaretçi modeli, gerçek dünya üzerine düşürülen sanal içeriklerin detaylarının yakından görülmesini ve işaretçiden uzaklaşıldığında oluşan görüntü kaybının önüne geçilmesini sağlamaktadır. Her bir katmanda bulunan işaretçi için görüntülemenin yapılabildiği takip mesafelerine çalışmada yer verilmektedir. İç katman kısa mesafeler için, dış katman uzak mesafeler için başarılı sonuçlar vermektedir

A Survey on Marker-Based Tracking Systems in Augmented Reality and Design of Multi-Layer Marker Model

Augmented reality is a technology which allows virtual contents generated by computer to be displayed on the real world in real time using computer vision techniques. Tracking methods play an important role in augmented reality applications. In this work, a survey on marker-based tracking systems in augmented reality is presented and a multi-layer marker model is proposed. Multi-layer marker model enables details of the virtual contents displayed on the real world to be seen closely and prevention of image loss occurring when moved away from the marker. Tracking distances are given for markers in each layer. Inner layer and outer layer give good results for short distances and long distances, respectively.

___

  • [1] Akbaş, M.F. 2011. Mobil Cihazlar Üzerinde 3-Boyutlu Arttırılmış Gerçeklik Arayüz Yazılımı Geliştirme. Ege Üniversitesi, Uluslararası Bilgisayar Enstitüsü, Yüksek Lisans Tezi, 103s, İzmir.
  • [2] Azuma, R. 1997. A Survey of Augmented Reality, Teleoperators and Virtual Environments, Cilt. 6, No. 4, s. 355-385.
  • [3] Milgram, P., Kishino, F. 1994. A Taxonomy of Mixed Reality Visual Displays, IEICE Transactions on Information Systems, s. 1321-1329.
  • [4] Ege, B. Şubat 2014. Arttırılmış Gerçeklik, Bilim ve Teknik Dergisi. [5] L. Frank Baum's "The Master Key" Imagines a Kind of Augmented Reality. http://historyofinformation.com/ex panded.php?id=4698 (Erişim Tarihi: 01.04.2016).
  • [6] Sensorama Machine. http://www.mortonheilig.com/Inve ntorVR.html (Erişim Tarihi: 01.04.2016).
  • [7] Sutherland, I. 1968. A HeadMounted Three Dimensional Display, AFIPS 68: Fall Joint Computer Conference, s. 757-764.
  • [8] Krueger, M., Gionfriddo, T., Hinrichsen, K. 1985. Videoplace - An Artificial Reality, SIGCHI Conference on Human Factors in Computing Systems, s. 35-40.
  • [9] History of Virtual Reality. http://www.vrs.org.uk/virtualreality/history.html (Erişim Tarihi: 01.04.2016)
  • [10] Caudell, T.P., Mizell, D.W. 1992. Augmented Reality: An Application of Heads-Up Display Technology to Manual Manufacturing Processes, Twenty-Fifth Hawaii International Conference on System Sciences, Cilt. 2, s. 659-669.
  • [11] Rosenberg, L.B. 1993. Virtual Fixtures: Perceptual Tools for Telerobotic Manipulation, IEEE Virtual Reality Annual International Symposium, s. 76-82.
  • [12] Feiner, S., MacIntyre, B., Seligmann, D. 1993. Knowledge-Based Augmented Reality, Communications of the ACM, Cilt. 36, No. 7, s. 53-62.
  • [13] Barrilleaux, J. Experiences and Observations in Applying Augmented Reality to Live Training http://jmbaai.com/vwsim99/vwsi m99.html (Erişim Tarihi: 01.04.2016).
  • [14] Sung, D. The History of Augmented Reality. http://www.pocketlint.com/news/108888-the-historyof-augmented-reality (Erişim Tarihi: 01.04.2016).
  • [15] Raskar, R., Welch, G., Fuchs, H. 1998. Spatially Augmented Reality, First IEEE International Workshop on Augmented Reality (IWAR 98), s. 11-20.
  • [16] ARToolKit. http://www.hitl.washington.edu/ar toolkit (Erişim Tarihi: 01.04.2016).
  • [17] Thomas, B., Close, B., Donoghue, J., Squires, J., De Bondi, P., Morris, M., Piekarski, W. 2000. ARQuake: An Outdoor/Indoor Augmented Reality First Person Application, Fourth International Symposium on Wearable Computers, s. 139-146.
  • [18] Wikitude. http://www.wikitude.com/product s/wikitude-sdk (Erişim Tarihi: 01.04.2016).
  • [19] Wikitude and The Augmented Reality Hype Cycle. http://www.augmentedplanet.com/ 2009/04/wikitude-and-theaugmented-reality-hype-cycle (Erişim Tarihi: 01.04.2016).
  • [20] Readers Choice Awards 2012 - Results. http://www.augmentedplanet.com/ 2012/10/readers-choice-awards- 2012-results (Erişim Tarihi: 01.04.2016).
  • [21] Layar. https://www.layar.com/solutions/ #sdk (Erişim Tarihi: 01.04.2016).
  • [22] What is FLARToolKit. http://www.libspark.org/wiki/saqo osha/FLARToolKit/en (Erişim Tarihi: 01.04.2016).
  • [23] Vuzix. https://www.vuzix.com (Erişim Tarihi: 01.04.2016).
  • [24] Meta. https://www.getameta.com (Erişim Tarihi: 01.04.2016).
  • [25] Google Glass. https://www.google.com/glass/star t (Erişim Tarihi: 01.04.2016).
  • [26] Microsoft HoloLens. https://www.microsoft.com/micros oft-hololens/en-us (Erişim Tarihi: 01.04.2016).
  • [27] Van Krevelen, D.W.F., Poelman, R. 2010. A Survey of Augmented Reality Technologies, Applications and Limitations, The International Journal of Virtual Reality, Cilt. 9, No. 2, s. 1-20.
  • [28] Nivedha, S., Hemalatha, S. 2015. A Survey on Augmented Reality, International Research Journal of Engineering and Technology (IRJET), Cilt. 2, No. 2, s. 87-96.
  • [29] Bimber, O., Raskar, R. 2006. Modern Approaches to Augmented Reality, ACM SIGGRAPH.
  • [30] Mallem, M. 2010. Augmented Reality: Issues, Trends and Challanges, 2nd International Conference on Image Processing Theory Tools and Applications (IPTA), s. 8.
  • [31] Alkhamisi, A.O., Monowar, M.M. 2013. Rise of Augmented Reality: Current and Future Application Areas, International Journal of Internet and Distributed Systems (IJIDS), Cilt. 1, No. 4, s. 25-34.
  • [32] Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B. 2001. Recent Advances in Augmented Reality, IEEE Computer Graphics and Applications, Cilt. 21, No. 6, s. 34-47.
  • [33] Ercan, M. 2010. A 3D Topological Tracking System for Augmented Reality. Orta Doğu Teknik Üniversitesi, Bilgisayar Mühendisliği Bölümü, Yüksek Lisans Tezi, 61s, Ankara.
  • [34] Azuma, R. 1993. Tracking Requirements for Augmented Reality, Communications of the ACM, Cilt. 36, No. 7, s. 50-51.
  • [35] Rabbi, I., Ullah, S. 2013. A Survey on Augmented Reality Challenges and Tracking, Acta Graphica, Cilt. 24, No. 1-2, s. 29-46.
  • [36] Cawood, S., Fiala, M. 2008. Augmented Reality: A Practical Guide, The Pragmatic Bookshelf, 1st Edition, 328s.
  • [37] Güngör, C., Kurt, M. 2014. Mobil Cihazlarda Görsel Arttırılmış Gerçeklik Algısının 3 Boyutlu Kırmızı-Camgöbeği Gözlükler ile Arttırılması, 22nd IEEE Signal Processing and Communications Applications Conference (SUI 2014), s. 1706-1709.
  • [38] Owen, C., Xiao, F., Middlin, P. 2002. What is the Best Fiducial?, The First IEEE International Workshop on Augmented Reality Toolkit, s. 98- 105.
  • [39] Fiala, M. 2010. Designing Highly Reliable Fiducial Markers, IEEE Transactions on Pattern Analysis and Machine Intelligence, Cilt. 32, No. 7, s. 1317-1324.
  • [40] Cho, Y., Neumann, U. 1998. Multiring Color Fiducial Systems for Scalable Fiducial Tracking Augmented Reality, IEEE Virtual Reality Annual International Symposium, s. 212.
  • [41] Naimark, L., Foxlin, E. 2002. Circular Data Matrix Fiducial System and Robust Image Processing for a Wearable Vision-Inertial SelfTracker, International Symposium on Mixed and Augmented Reality (ISMAR 2002), s. 27-36.
  • [42] Ababsa, F., Mallem, M. 2008. A Robust Circular Fiducial Detection Technique and Real-Time 3D Camera Tracking, Journal of Multimedia, Cilt. 3, No. 4, s. 34-41.
  • [43] ARToolKit. http://www.hitl.washington.edu/ar toolkit/documentation/devmulti.ht m (Erişim Tarihi: 01.04.2016).
  • [44] Kato, H., Billinghurst, M. 1999. Marker Tracking and HMD Calibration for a Video-based Augmented Reality Conferencing System, 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR 99), s. 85-94.
  • [45] ARToolKit. http://www.hitl.washington.edu/ar toolkit/documentation/tutorialmult i.htm (Erişim Tarihi: 01.04.2016).
  • [46] Rekimoto, J., Ayatsuka, Y. 2000. CyberCode: Designing Augmented Reality Environments with Visual Tags, Conference on Designing Augmented Reality Environments (DARE 2000), s. 1-10.
  • [47] Claus, D., Fitzgibbon, A.W. 2004. Reliable Fiducial Detection in Natural Scenes, 8th European Conference on Computer Vision (ECCV 2004), s. 469-480.
  • [48] Fiala, M. 2005. ARTag, A Fiducial Marker System Using Digital Techniques, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), s. 590-596.
  • [49] Neto, V.F.d.C, Mesquita, D.B.d, Garcia, R.F, Campos, M.F.M. 2010. On the Design and Evaluation of a Precise Scalable Fiducial Marker Framework, 23rd SIBGRAPI Conference on Graphics, Patterns and Images, s. 216-223.
  • [50] Jo, K., Kakehi, Y., Minamizawa, K., Nii, H., Kawakami, N., Tachi, S. 2008. ARForce: A Marker-based Augmented Reality System for Force Distribution Input, International Conference on Advances in Computer Entertainment Technology (ACE 2008), s. 160-165.
  • [51] Tateno, K., Kitahara, I., Ohta, Y. 2007. A Nested Marker for Augmented Reality, IEEE Virtual Reality Conference (VR 07), s. 259- 262.
  • [52] Herout, A., Zacharias, M., Dubska, M., Havel, J. 2012. Fractal Marker Fields: No More Scale Limitations for Fiduciary Markers, IEEE International Symposium on Mixed and Augmented Reality (ISMAR 2012), s. 285-286.
  • [53] Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., Schmalstieg, D. 2008. Pose Tracking from Natural Features on Mobile Phones, 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (ISMAR 2008), s. 125-134.
  • [54] Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., Schmalstieg, D. 2010. Real-Time Detection and Tracking for Augmented Reality on Mobile Phones, IEEE Transactions on Visualization and Computer Graphics, Cilt. 16, No. 3, s. 355-368.
  • [55] Beier, D., Billert, R., Bruderlin, B., Stichling, D., Kleinjohann, B. 2003. Marker-less Vision Based Tracking for Mobile Augmented Reality, The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, s. 258-259.
  • [56] OpenGL. http://www.opengl.org (Erişim Tarihi: 01.04.2016).
  • [57] Fiala, M. 2005. Comparing ARTag and ARToolKit Plus Fiducial Marker Systems, IEEE International Workshop on Haptic Audio Visual Enviroments and their Applications (HAVE 2005), s. 148-153.
  • [58] ARToolKit. http://www.hitl.washington.edu/ar toolkit/documentation/userarwork. htm (Erişim Tarihi: 01.04.2016).
  • [59] Malbezin, P., Piekarski, W., Thomas, B.H. 2002. Measuring ARToolKit Accuracy in Long Distance Tracking Experiments, The First IEEE International Workshop on Augmented Reality Toolkit.
  • [60] Khan, D., Ullah, S., Rabbi, I. 2015. Factors Affecting the Design and Tracking of ARToolKit Markers, Computer Standards & Interfaces, Cilt. 41, s. 56-66.