Sayısal Görüntü İşleme ile Titreşim Yer Değiştirmelerinin Ölçümü ve Modal Parametre Tayini
İnşaat mühendisliği yapılarında deneysel yöntemler ile elde edilen yer değiştirme gibi fiziksel büyüklükler ile modal parametreler yapının mevcut durumu hakkında önemli bilgiler içermektedir. Bu parametrelerin tayini genellikle ivme, hız ve yer değiştirme ölçerler ile toplanan verilerin zaman veya frekans alanında analizi ile yapılmaktadır. Fakat bu verilerin alışılagelmiş yöntemler ile elde edilmesi çoğu kez pratik olmamaktadır. Son yıllarda ise sayısal görüntü işleme teknikleri titreşim verilerinin çok daha ucuz ve kolay bir şekilde toplanmasına olanak tanımaktadır. Bu çalışmada, sayısal görüntü işleme teknikleri ile yapı titreşimlerinin ölçülmesi ve deneysel modal parametrelerin (doğal frekans, mod şekilleri v.b.) tayini üzerinde durulmuştur. Alüminyum alaşımdan inşa edilmiş dört katlı tek açıklıklı model bir yapı üzerinde üç yöntem test edilmiştir. Bu yöntemler sırasıyla Kanade-Lucas-Tomasi (KLT) algoritması, korelasyon tabanlı şablon eşleştirme ve görsel akış yöntemleridir. İlk iki yaklaşımda, titreşim kaynaklı yer değiştirmeler ölçülürken diğer yaklaşımda hız büyüklükleri ölçülebilmektedir. Ayrıca tüm yöntemlerde doğal hedeflerin takibi ile bu büyüklükler bulunabilmektedir. Bu çalışma kapsamında belirtilen yöntemlerin performansları, test yapısından ivmeölçerler ve LVDT yardımıyla toplanan veriler ile karşılaştırma yapılarak değerlendirilmiştir.
omputer Vision Based Vibrational Displacement Measurement and Modal Identification
Physical parameters such as displacements and modal parameters that are obtained from experimental tests contain crucial information about the current state of civil engineering structures. Identification of those parameters has been usually carried out by the time and the frequency domain analysis of the data obtained by means of accelerometers, velocity and displacement transducers. However, it is not always practical to obtain such experimental quantities via conventional methods. Recently, digital image processing techniques have made it possible to measure vibrational data in a way that is much cheaper and easier. In this study, computer vision based measurement of structural vibrations and identification of experimental modal parameters (natural frequency, mode shapes etc.) are emphasized. Three popular methods are introduced and tested on a 4-storey single-span laboratory structure, which is made of aluminum alloy. The investigated methods are KanadeLucas-Tomasi (KLT) algorithm, a correlation-based template matching method and an optical flow method, respectively. While the first two methods are used to measure the vibrational displacements, the last approach is suitable for velocity field measurements. In addition, all methods are capable of capturing vibrational quantities by tracking natural targets located on the structure. In this study, the presented methods are discussed and their performances are evaluated by comparing the results with conventional accelerometers and LVDT measurements.
___
- Mukhopadhyay, S.C., ed. 2011. New Developments in sensing technology for structural health monitoring, Lecture Notes in Electrical Engineering, Springer, Berlin.
- Brincker R, Andersen P, Jacobsen NJ., 2007. Automated frequency domain decomposition for operational modal analysis. Proceedings of IMAC-XXIV: A Conference and Exposition on Structural Dynamics. Society for Experimental Mechanics, Florida, USA.
- Van Overschee P., De Moor B. 1996. Subspace identification for linear systems: Theory - Implementation - Applications. Kluwer Academic
Publishers, Dordrecht, The Netherlands
- Rainieri, C. ve Fabbrocino,G. 2014. Operational Modal Analysis of Civil Engineering Structures An Introduction and Guide for Applications, Springer, Berlin.
- Catbas, N.F., Correa,K.T ve Aktan,A.E. 2013. Structural Identification of Constructed Systems Approaches, Methods, and Technologies for Effective Practice of St-Id, American Society of Civil Engineers, ASCE,USA.
- Feng, M.Q., Fukuda, Y., Feng, D. and Mizuta, M. 2015 Nontarget Vision Sensor for Remote Measurement of Bridge Dynamic Response, Journal of Bridge Engineering, Cilt. 20(12), s. 1-11.
- Khuc, T. and Catbas, F.N. 2017. Completely contactless structural health monitoring of real-life structures using cameras and computer vision, Structural Control and Health Monitoring,Cilt. 24(1), s. e1852, DOI: 10.1002/stc.1852
- Feng, D., Feng, M. Q., Ozer E. ve Fukuda Y. 2015. A Vision-Based Sensor for Noncontact Structural Displacement Measurement, Sensors, Cilt. 15, s. 16557-16575. doi:10.3390/s150716557
- Dworakowski Z., Kohut, P., Gallina, A., Holak K. ve Uhl, T. (2016) Vision-based algorithms for damage detection and localization in structural health monitoring,Structural Control and Health Monitoring, Cilt. 23, s. 35– 50. 10.1002/stc.1755
- Yoon, H., Elanwar, H., Choi, H., Fard,M.G., Spencer, B.F. 2016. Target-free approach for visionbased structural system identification using consumergrade cameras, Structural Control and Health Monitoring, Cilt. 23, s. 1405–1416. DOI: 10.1002/stc.1850
- Oh, B.K., Hwang, J.W., Kim,Y., Cho,T., Park, H.S. 2015. Visionbased system identification technique for building structures using a motion capture system, Journal of Sound and Vibration, Cilt. 356, s. 72–85. http://dx.doi.org/10.1016/j.jsv.20 15.07.011
- Feng, D., Feng, M.Q. 2017. Experimental validation of costeffective vision-based structural health monitoring, Mechanical Systems and Signal Processing, Cilt. 88, s. 199–211. http://dx.doi.org/10.1016/j.ymssp .2016.11.021
- Kohut, P., Holak,K., Uhl,T., Ortyl, L., Owerko,T., Kuras, P. And Kocierz, R. 2013. Monitoring of a civil structure’s state based on noncontact measurements, Structural Health Monitoring Cilt. 12(5-6), s. 411–429. DOI: 10.1177/1475921713487397
- Kim, S.W., Kim N.S. 2013. Dynamic characteristics of suspension bridge hanger cables using digital image processing, NDT&E International, Cilt. 59, s. 25–33. http://dx.doi.org/10.1016/j.ndtein t.2013.05.002
- Ye, X.W., Dong, C. Z., Liu, T. 2016. A Review of Machine Vision-Based Structural Health Monitoring: Methodologies and Applications, Journal of Sensors, 7103039, 10 pages.http://dx.doi.org/10.1155/2 016/7103039
- Shi, J., Tomasi.C. 1994. Good features to track. IEEE Conference on Computer Vision and Pattern Recognition (CVPR'94), 593 – 600.
- Fredriksson, K., Ukkonen, E. 2001 Faster template matching without FFT. In: Proc. IEEE Intl. Conf. on Image Processing (ICIP). Volume 1, 678–681.
- Barron, J.L., Fleet, D.J., Beauchemin, S.S. 1994. Performance of optical flow techniques. International Journal of Computer Vision, Cilt. 12, s. 4377. DOI: 10.1007/BF01420984
- Ullah,F. Kaneko,S 2004. Using orientation codes for rotationinvariant template matching, Pattern Recognition Cilt.37, s. 201 – 209 doi:10.1016/S00313203(03)00184-5
- Ji,Y.F., Chang,C.C. 2008. Nontarget image-based technique for small cable vibration measurement, Journal of Bridge Engineering Cilt.13, s. 34 - 42 doi:10.1061/_ASCE_10840702_2008_ 13:1_34_
- http://avesis.yildiz.edu.tr/serhate/ dokumanlar
- Ewnis,D.J. 2000. Modal Testing: theory, practice and application, 2nd edition, Research Studies Press, England