Altın Nanoparçacık Modifiye Çok Duvarlı Karbon Nanotüp Elektrotlarda Vanilin Tayini

Bu çalışmada, Vanilin(VAN) tayini için modifiye elektrotlar hazırlanmıştır. Çok duvarlı karbon nanotüpler (MWCNT) asit muamelesi ile foksiyonalize edilmiş ve ardından altın nanoparçacıklar ardışık tekrarlanan taramalar ile altın nanoparçacık modifiye çok duvarlı karbon nanotüp camımsı karbon elektrot (Au-MWCNT/GCE) oluşturmak üzere elektrokimyasal olarak biriktirilmiştir. Elektrot yüzey yapısı ve morfolojisi taramalı electron mikroskopu (SEM) ile karakterize edilmiştir. Elde edilen Au-MWCNT/GC elektrot VAN’nin yükseltgenmesine iyi bir yanıt vermiştir. Diferansiyel puls çalışmalarından elde edilen kalibrasyon eğrisi iki doğrusal aralık içerir ve bu aralıklar 7.0x10-8-6.5x10-6 mol L-1 ve 7.0x10-6-7.5x10-5 mol L-1 dir ve belirtme alt sınırı ise 3.8x10-8 mol L-1dir. Önerilen modifiye elektrodun pratik uygulaması ticari dondurma ve süt tozundaki VAN tayini ile test edimiştir. Tatmin edici sonuçlar, Au– MWCNT/GCE nin sensör uygulamaları için umut vadeden potansiyele sahip olduğunu göstermiştir.

Electrochemical Vanillin Determination on Gold Nanoparticles Modified Multiwalled Carbon Nanotube Electrode

In this study, modified electrodes were prepared for Vanilline (VAN) determination. Multiwalled carbon nanotubes (MWCNT) were functionalized with acid treatment and then gold nanoparticles were electrodeposited on the MWCNTs by applying several repetitive scans in order to form gold nanoparticles modified multiwalled carbon nanotube glassy carbon electrode (Au–MWCNT/GCE) surface. The morphology and structure of electrode surfaces were characterized by scanning electron microscopy (SEM). The resulting Au–MWCNT/GC electrode showed efficient behavior to VAN electro-oxidation. The calibration graph consisted of two linear segments of 7.0x10-86.5x10-6 mol L-1 and 7.0x10-6-7.5x10-5 mol L-1 with a detection limit of 3.8x10-8 mol L-1 that obtained from differential pulse studies. The practical applicability of the proposed modified electrode was tested for the determination of VAN in commercial ice cream and milk powder. The satisfactory results show that the Au–MWCNT/GCE has promising potential in sensor applications.

___

  • Sivakumar, M., Sakthivel, M., Chen, Shen-M. 2017. Simple synthesis of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples, Journal of Colloid and Interface Science, Vol. 490, p. 719-726. DOI: 10.1016/j.jcis.2016.11.094
  • Walton, N.J., Mayer, M.J., Narbad, A. 2003. Vanillin, Phytochemistry, Vol. 63, p. 505-515. DOI: 10.1016/S0031-9422(03)001493.
  • Sinha, A.K., Sharma, U.K., Sharma N. 2008. A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents, International Journal of Food Sciences and Nutrition, Vol. 59, p. 299-326. DOI: 10.1080/09687630701539350
  • Luo, S., Liu, Y. 2012. Poly(acid chrome blue K) modified glassy carbon electrode for the determination of vanillin, International Journal of Electrochemical Science, Vol. 7, p. 6396-6405.
  • Hardcastle, J.L., Paterson, C.J., Compton, R.G. 2001. Biphasic Sonoelectroanalysis: Simultaneous Extraction from,and Determination of Vanillin in Food Flavoring, Electroanalysis, Vol. 13, p. 899-905.
  • Jiang, L., Ding, Y., Jiang, F., Li, L., Mo F. 2014. Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin, Analytica Chimica Acta, Vol. 833, p. 22–28. DOI: 10.1016/j.aca.2014.05.010.
  • Huang, L., Hou, K., Jia, X., Pan, H., Du, M. 2014. Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection, Materials Science and Engineering: C, Vol. 38, p. 39-45. DOI: 10.1016/j.msec.2014.01.037.
  • Shen, Y., Han, C., Liu B., Lin, Z., Zhou, X., Wang, C., Zhu Z. 2014. Determination of vanillin, ethyl vanillin, and coumarin in infant formula by liquid chromatography-quadrupole linear ion trap mass spectrometry, Journal of Dairy Science, Vol. 97, p. 679–686. DOI: 10.3168/jds.20137308.
  • Ohashi, M., Omae, H., Hashida, M., Sowa, Y., Imai S. 2007. Determination of vanillin and related flavor compounds in cocoa drink by capillary electrophoresis, Journal of Chromatography A, Vol. 1138, p. 262–267. DOI: 10.1016/j.chroma.2006.10.031.
  • Turkia, H., Sirén, H., Penttilä M., Pitkänen J.P. 2013. Capillary electrophoresis for the monitoring of phenolic compounds in bioprocesses, Journal of Chromatography A, Vol. 1278, p. 175–180. DOI: 10.1016/j.chroma.2013.01.004.
  • Timotheou-Potamia, M., Calokerinos A.C. 2007. Chemiluminometric determination of vanillin in commercial vanillin products, Talanta, Vol. 71, p. 208–212. DOI: 10.1016/j.talanta.2006.03.046.
  • Duan, H., Li, X., Li, L., Wang, X., Feng, J., Sun, M., Luo C. 2014. A novel chemiluminescence sensor for determination of vanillin with magnetite–graphene oxide molecularly imprinted polymers, Analytical Methods, Vol. 6, p. 8706-8712. DOI: 10.1039/C4AY01275E.
  • Waliszewski, K.N., Pardio, V.T., Ovando S.L. 2007. A simple and rapid HPLC technique for vanillin determination in alcohol extract, Food Chemistry,Vol. 101, p. 1059– 1062. DOI: 10.1016/j.foodchem.2006.03.004.
  • de Jager, L.S., Perfetti, G.A., Diachenko, G.W. 2007. Determination of coumarin, vanillin, and ethyl vanillin in vanilla extract products: liquid chromatography mass spectrometry method development and validation studies. Journal of Chromatography A, Vol. 1145, p. 83-88. DOI: 10.1016/j.chroma.2007.01.039.
  • Sinha, A.K., Sharma, U.K., Sharma, N. 2008. A comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents, International Journal of Food Sciences and Nutrition, Vol. 59, p. 299-326. DOI: 10.1080/09687630701539350.
  • Silva, T.R., Brondani, D., Zapp, E., Vieira, I.C. 2015. Electrochemical sensor based on gold nanoparticles stabilized in poly(allylamine hydrochloride) fordetermination of vanillin, Electroanalysis, Vol. 27, p. 465– 472. DOI: 10.1002/elan.201400517.
  • Yardım, Y., Gülcan, M., Sentürk, Z. 2013. Determination of vanillin in commercial food product by adsorptive stripping voltammetry using a boron-doped diamond electrode, Food Chemistry, Vol. 141, p. 1821–1827. DOI: 10.1016/j.foodchem.2013.04.085.
  • Yardım, Y., Gülcan, M., Şentürk Z. 2013. Determination of vanillin in commercial food product by adsorptive stripping voltammetry using a boron-doped diamond electrode, Food Chemistry, Vol. 141, p. 1821–182. DOI: 10.1016/j.foodchem.2013.04.085.
  • Ali, H.S., Abdullah, A.A., Pınar, P.T., Yardım, Y., Şentürk Z. 2017. Simultaneous voltammetric determination of vanillin and caffeine in food products using an anodically pretreated borondoped diamond electrode: Its comparison with HPLC-DAD, Talanta, Vol. 170, P. 384–391. DOI: 10.1016/j.talanta.2017.04.037.
  • Chethana, B.K., Basavanna, S., Naik, Y.A. 2012. Determination of vanillin in real samples using lysine modified carbon paste electrode, Journal of Chemical and Pharmaceutical Research, Vol. 4, p. 538–545.
  • Peng, J., Hou, C., Hu, X. 2012. A graphene-based electrochemical sensor for sensitive detection of vanillin, International Journal of Electrochemical Science, Vol. 7, p. 1724–1733.
  • Li, J., Feng, H., Li, J., Jiang, J., Feng, Y., He, L., Qian,D. 2015. Bimetallic Ag-Pd nanoparticlesdecorated graphene oxide: a fascinating three-dimensional nanohybrid as an efficient electrochemical sensing platform for vanillin determination, Electrochimica Acta, Vol. 176, p. 827–835. DOI: 10.1016/j.electacta.2015.07.091.
  • Ulubay, Ş., Dursun, Z. 2010. Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid, Talanta, Vol. 80, p. 1461–1466. DOI: 10.1016/j.talanta.2009.09.054.
  • Development of pulsed deposited manganese and molybdenum oxide surfaces decorated with platinum nanoparticles and their catalytic application for formaldehyde oxidation Ozdokur, K.V., Tatlı, A.Y., Yılmaz, B., Koçak, S., Ertaş F.N. 2016. International Journal of Hydrogen Energy, Vol. 41, p. 5927 -5933. DOI: 10.1016/j.ijhydene.2016.02.127.
  • Koçak, S., Aslışen B. 2014. Hydrazine oxidation at gold nanoparticles and poly(bromocresol purple) carbon nanotube modified glassy carbon electrode, Sensors and Actuators B, Vol. 196, p. 610–618. DOI: .org/10.1016/j.snb.2014.02.061.
  • Cittan, M., Koçak, S., Çelik, A., Dost K. 2016, Determination of oleuropein using multiwalled carbon nanotube modified glassy carbon electrode by adsorptive stripping square wave voltammetry, Talanta, Vol. 159 p. 148–154. DOI: 10.1016/j.talanta.2016.06.021.
  • Bakır, Ç.C., Şahin, N., Polat, R., Dursun Z. 2011. Electrocatalytic reduction of oxygen on bimetallic copper–gold nanoparticles– multiwalled carbon nanotube modified glassy carbon electrode in alkaline solution, Journal of Electroanalytical Chemistry, Vol. 662 p. 275–280.
  • Ertek, B., Dilgin, Y. 2016. Photoamperometric flow injection analysis of glucose based on dehydrogenase modified quantum dots-carbon nanotube nanocomposite electrode, Bioelectrochemistry, Vol. 112, p. 138–144. DOI: 10.1016/j.bioelechem.2016.02.00 8.
  • Ayan, E.M., Karabiberoğlu, Ş.U., Dursun, Z. 2013. Electrochemistry of 2,6-diaminopurine on multiwall carbon nanotube modified glassy carbon electrode, Turkish Journal of Chemistry, Vol.37, p. 325–334. DOI: 10.3906/kim-1111-4.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi