PHOTOBIOREACTORS FOR SUSTAINABLE BUILDINGS

Dünya nüfusunda meydana gelen hızlı artış ile beraber, insan aktiviteleri çevre ve ekoloji üzerinde daha büyük etkiler bırakmaya başlamıştır, ki bu etkiler her zaman iyi olmamaktadır. Özellikle popülasyonun yoğun olduğu büyük şehirlerde bu etkiler daha fazla hissedilmektedir. Günümüzde dünya nüfusu 7 milyarın üzerindedir ve bu nüfusun bireysel ya da endüstriyel aktiviteleri doğrultusunda doğa ve diğer yaşayan sistemler zarar görmekte ve tehlike altına girmektedir. Büyük resme bakıldığında, doğanın artık bu negatif etkilerle başa çıkamadığı fark edilmiş ve bu sefer insanlık bu etkileri minimize edebilmek adına çalışmalar yapmaya başlamıştır. Bu bağlamda yenilenebilir enerji teknolojilerinin günlük yaşama entegrasyonu ile daha temiz ve yeşil bir enerji tüketim anlayışı benimsenmeye çalışılmıştır. Bu bağlamda mikroalgal biyoteknolojinin de bina sistemlerine entegrasyonu fikri ile enerji çözümlerine yeni bir yaklaşım getirilmiş ye fütüristik bir çalışma alanı oluşturulmuştur.

(FOTOBİYOREAKTÖRLER VE SÜRDÜRÜLEBİLİR BİNA UYGULAMALARI)

With the accelerated increase in World population, human activities leave bigger traces on environment and ecology, which are not always signs for good. Especially places where more concentrated populations live in, like metropolitans or bigger cities, these traces are more significant. Today, World population is more than 7 billions of people, and the individual or industrial activities of this population endanger the nature and many living systems. It is recognized that nature cannot handle this massive amount of negative accumulation and humans started to react to minimize the effects of the circumstances that harm nature. Renewable energy technologies are introduced for a better, green and sustainable energy consumption. With the idea of integrating microalgal biotechnology with renewable energy systems, a novel solution to energy problem has been introduced and a futuristic research area has been developed.

___

  • Toone E, de Winde H. Energy Biotechnology in 2013: Advanced Technology Development For Breakthroughs in Fuels and Chemicals Production, Curr. Opin. Biotechnol., Vol. 24, No. 3, 2013, pp.367-368.
  • Vidal-Amaro JJ, Østergaard PA, Sheinbaum-Pardo C. Optimal Energy Mix for Transitioning from Fossil Fuels to Renewable Energy Sources-The Case of the Mexican Electricity System, Appl. Energy, Vol. 150, 2015, pp.80-96.
  • Yu J. Bio-Based Products from Solar Energy and Carbon Dioxide, Trends Biotechnol., Vol. 32, No. 1, 2014, pp.5-10.
  • Sekar N, Ramasamy RP. Recent Advances in Photosynthetic Energy Conversion, J. Photochem. Photobiol. C Photochem. Rev., Vol. 22, 2015, pp.19-33.
  • Technologies W. Intellectual Property and Access to Clean Energy Technologies in Developing Countries Intellectual Property and Access to Clean Energy Technologies in Developing Countries An Analysis of Solar Photovoltaic, Biofuel and Wind Technologies, No. 2, 2007.
  • Ottelé M, Perini K, Fraaij ALA, Haas EM, Raiteri R. Comparative Life Cycle Analysis for Green Façades and Living Wall Systems, Vol. 43, 2011, pp.3419-3429.
  • Somali B, Ilıcalı E, Kelimeler A. Leed Ve Breeam Uluslararası Yeşil Bina, pp.1081- 1088.
  • Stec WJ, Van Paassen AHC, Maziarz A. Modelling the Double Skin Façade With Plants, Vol. 37, 2005, pp.419-427.
  • Gouic LE, Technologies LA, Borgne L. Symbiotic Integration of Photobioreactors in a Factory Building Façade for Mutual Benefit between Buildings and Microalgae Needs Industrial Interest of Microalgae Microalgae : A New Vegetable Feedstock with High Potential.
  • Pruvost J, Cornet JF, Le Borgne F, Goetz V, Legrand J. Theoretical Investigation of Microalgae Culture in the Light Changing Conditions of Solar Photobioreactor Production and Comparison with Cyanobacteria, Algal Res., Vol. 10, 2015, pp.87-99.
  • Brager G, Zhang H, Arens E. Evolving Opportunities for Providing Thermal Comfort, No. April, 2015, pp.37-41.
  • Karemore A, Pal R, Sen R. Strategic Enhancement of Algal Biomass and Lipid in Chlorococcum Infusionum as Bioenergy Feedstock, Algal Res., Vol. 2, No. 2, 2013, pp.113-121.
  • Olaizola M. Commercial Development of Microalgal Biotechnology: from the Test Tube to the Marketplace, Biomol. Eng., Vol. 20, No. 4-6, 2003, pp.459-466.
  • Beer LL, Boyd ES, Peters JW, Posewitz MC. Engineering Algae for Biohydrogen and Biofuel Production, Curr. Opin. Biotechnol., Vol. 20, No. 3, 2009, pp.264-271.
  • Romagnoli F, Systems E, Blumberga D. Biogas from Marine Macroalgae : A New Environmental Technology, Life Cycle Inventory for a Further LCA, Vol. 4, 2010, pp.97- 109.
  • Rahman QM, Wang L, Zhang B, Xiu S, Shahbazi A. Green Biorefinery of Fresh Cattail for Microalgal Culture and Ethanol Production, Bioresour. Technol., Vol. 185, 2015, pp.436-440.
  • Anderson LG. Effects of Using Renewable Fuels on Vehicle Emissions, Renew. Sustain. Energy Rev., Vol. 47, 2015, pp.162-172.
  • Perini K, Rosasco P., Cost E. Benefit Analysis for Green Façades and Living Wall Systems, Vol. 70, 2013, pp.110-121.
  • Coma J, Pérez G, Solé C, Castell A, Cabeza LF. New Green Facades as Passive Systems for Energy Savings on Buildings, Energy Procedia, Vol. 57, 2014, pp.1851-1859.
  • Manso M, Castro-Gomes J. Green Wall Systems : A Review of their Characteristics, Renew. Sustain. Energy Rev., Vol. 41, 2015, pp.863-871.
  • Köhler M. Green Facades-A View Back and Some Visions, 2008, pp.423-436.
  • Ehsan SD, Gombak J, Lumpur K. Green Building Assessment Tools : Evaluating Different Tools for Green Roof System, Vol. 1, No. 11, 2013, pp.1-14.
  • Zuo J, Zhao Z. Green Building Research-Current Status and Future Agenda : A Review Why ? How ? How ? What ?, Renew. Sustain. Energy Rev., Vol. 30, 2014, pp.271-281.
  • Perini K, Ottelé M, Fraaij ALA, Haas EM, Raiteri R, Doernach R, Ungers OM. Vertical Greening Systems and the Effect on Air Fl Ow and Temperature on the Building Envelope, Build. Environ., Vol. 46, No. 11, 2011, pp.2287-2294.
  • Perini K, Ottelé M, Haas EM. Vertical Greening Systems, A Process Tree For Green Façades And Living Walls, 2013, pp.265-277.
  • Ong BL. Green Plot Ratio : An Ecological Measure for Architecture and Urban Planning, Vol. 63, 2013, pp.197-211.
  • Perini K, Ottelé M, Haas EM, Raiteri R, Ungers OM, Greening the Building Envelope, Façade Greening and Living Wall Systems, Vol. 1, No. 1, 2011, pp.1-8.
  • Pérez-urrestarazu L, Egea G, Franco-Salas A, Fernández-Cañero R. Irrigation Systems Evaluation for Living Walls, 2014, pp.1-11.
  • Pérez G, Coma J, Martorell I, Cabeza LF, Vertical Greenery Systems (Vgs) for Energy Saving in Buildings : A Review, Renew. Sustain. Energy Rev., Vol. 39, 2014, pp.139- 165.
  • Taylor P, Yu C, Hien WN. Thermal Impact of Strategic Landscaping in Cities : A Review Thermal Impact of Strategic Landscaping in Cities : A Review, 2015.
  • Liang Y, Wen Z. Advances in Biorefineries. Elsevier, 2014.
  • Ip K, Lam M, Miller A. Shading Performance of a Vertical Deciduous Climbing Plant Canopy, Build. Environ., Vol. 45, No. 1, 2010, pp.81-88.
  • Djedjig R, Bozonnet E, Belarbi R, Analysis of Thermal Effects of Vegetated Envelopes : Integration of a Validated Model in a Building Energy Simulation Program, Energy Build., Vol. 86, 2015, pp.93-103.
  • Azkorra Z, Pérez G, Coma J, Cabeza LF, Bures S, Álvaro JE, Erkoreka A, Urrestarazu M. Evaluation of Green Walls as a Passive Acoustic Insulation System for Buildings, Appl. Acoust., Vol. 89, 2015, pp.46-56.
  • Liu Y, Guo X, Hu F. Cost-Benefit Analysis on Green Building Energy Efficiency Technology Application : A Case in China, Energy Build., Vol. 82, 2014, pp.37-46.
  • Bosma R, Wijffels RH. Marine Biotechnology in Education: A Competitive Approach, Biomol. Eng., Vol. 20, No. 4-6, 2003, pp.125-131.
  • Li J, Stamato M, Velliou E. Design and Characterization of a Scalable Airlift Flat Panel Photobioreactor for Microalgae Cultivation, 2015, pp.75-86.
  • Caporgno MP, Taleb A, Olkiewicz M, Font J, Pruvost J, Legrand J, Bengoa C. Microalgae Cultivation in Urban Wastewater: Nutrient Removal and Biomass Production for Biodiesel And Methane, Algal Res., Vol. 10, 2015, pp.232-239.
  • Norsker N, Barbosa MJ, Vermuë MH, Wijffels RH. Microalgal Production--A Close Look at the Economics, Biotechnol. Adv., Vol. 29, No. 1, 2011, pp.24-27.
  • Cuellar-Bermudez SP, Garcia-Perez JS, Rittmann BE, Parra-Saldivar R. Photosynthetic Bioenergy Utilizing Co2: An Approach on Flue Gases Utilization for Third Generation Biofuels, J. Clean. Prod., Vol. 98, 2014, pp.53-65.
  • Yen H, Hu I, Chen C, Ho S, Lee D, Chang J. Bioresource Technology Microalgae-Based Biorefinery-from Biofuels to Natural Products, Bioresour. Technol., Vol. 135, 2013, pp.166-174.
  • Vanthoor-Koopmans M, Wijffels RH, Barbosa MJ, Eppink MHM. Biorefinery of Microalgae for Food and Fuel, Bioresour. Technol., Vol. 135, 2013, pp.142-149.
  • Jaber S, Ajib S. Thermal and Economic Windows Design for Different Climate Zones, Energy Build., Vol. 43, No. 11, 2011, pp.3208-3215.
  • Blanch HW. Bioprocessing for Biofuels, Curr. Opin. Biotechnol., Vol. 23, No. 3, 2012, pp.390-395.
  • Lehr F, Posten C. Closed Photo-Bioreactors as Tools for Biofuel Production, Curr. Opin. Biotechnol., Vol. 20, No. 3, 2009, pp.280-285.
  • Heining M, Sutor A, Stute SC, Lindenberger CP. Internal Illumination of Photobioreactors via Wireless Light Emitters : A Proof of Concept, 2015, pp.59-66.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi