FONONİK KRİSTAL KAPLAMA İLE GÖSTERİ SALONLARINDA AKUSTİK YALITIMIN SAYISAL İNCELENMESİ

Periyodik üçgensel ahşap çıkıntılardan oluşan fononik kristal ile duvarların kaplanmasının ses yalıtımına katkı sağlayacağı sayısal hesaplarla gösterilmiştir. Ses yalıtımı fononik kristalin yüzey kipleri ile gerçekleştirilmektedir. Sonlu Elemanlar Yöntemi ile yürütülen band yapısı hesapları fononik kristal periyodu 25 cm, ahşap et kalınlığı 15 mm ve üçgen tepe açısı 60 derece iken tepe frekansı 553 Hz olan yüzey bandını göstermektedir. Yüzey kiplerinin üçgenler arasındaki düzlüklerde yerelleştiği yüzey bandı 440 Hz frekansındaki akort notasını kapsamaktadır. Durağan Sonlu Elemanlar analizleri yaklaşık olarak 300 Hz ile 550 Hz arasında yüzey ile küçük açılar yaparak gelen düzlem dalgaların az yansıma ile ve saçılmadan yüzeyde kılavuzlanabildiğini göstermiştir. Kılavuzlama 440 Hz frekansında 30 dereceye kadar olan geliş açılarında sağlanabilmektedir

NUMERICAL INVESTIGATION OF ACOUSTIC ISOLATION IN PERFORMANCE HALLS THROUGH COVERING WITH PHONONIC CRYSTALS

Sound isolation via covering walls with phononic crystal composed of periodic triangular wooden protrusions is demonstrated through numerical calculations. Sound isolation is achieved by surface modes of the phononic crystal. Band structure calculations through the Finite Element Method revealed a surface band with a maximum of 553 Hz when the periodicity, wall thickness and triangle apex angle are 25 cm, 15 mm and 60 degrees, respectively. Surface band the modes of which are localized in the flat regions between triangles covers the accord frequency at 440 Hz. Stationary Finite Element analyses demonstrate that plane waves with frequency between approximately 300 Hz and 550 Hz incident at small angles with the surface can be guided over the surface with low reflection and scattering. Guiding at 440 Hz can be achieved up to 30 degrees angle of incidence

___

  • Mehta, M., Johnson, J., Rocafort, J. Principles and Design, Prentice Hall. Maldovan, M. 2013. Sound and heat revolutions in phononics, Nature, Cilt. , Doi:10.1038/nature12608
  • Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites, Physical Review Letters, Cilt. 71, No. 13, s. https://doi.org/10.1103/PhysRevLett. 2022
  • Kushwaha, M.S., Halevi, P., Martinez, G., Dobrzynski, L., Djafari- Rouhani, B. 1994. Theory of acoustic band structure of periodic elastic composites, Physical Review B, Cilt. , https://doi.org/10.1103/PhysRevB.49 2313
  • Sainidou, R., Stefanou, N., Modinos, A. 2002. Formation of absolute frequency gaps in three-dimensional solid phononic crystals, Physical
  • Review B, Cilt. 66, No. 21, s. 212301. DOI: https://doi.org/10.1103/PhysRevB.66 212301
  • Vasseur, J., Deymier, P.A., Djafari- Rouhani, B., Pennec, Y., Hladky- Hennion, A. 2008. Absolute forbidden bands and waveguiding in two- dimensional phononic crystal plates,
  • Physical Review B, Cilt. 77, No.8, s. https://doi.org/10.1103/PhysRevB.77 085415
  • Martínez-Sala, R., Rubio, C., García- Raffi, L. M., Sánchez-Pérez, J. V., Sánchez-Pérez, E.A., Llinares, J. 2006.
  • Control of noise by trees arranged like sonic crystals, Journal of Sound and Vibration, Cilt. 291, No. 1, s. 100-106. DOI: http://dx.doi.org/10.1016/j.jsv.2005. 030
  • Wu, T.T., Huang, Z.G., Tsai, T.C., Wu, T.C. 2008. Evidence of complete band gap and resonances in a plate with periodic stubbed surface, Applied
  • Physics Letters, Cilt. 93, No. 11, s. DOI: 10.1063/1.2970992
  • Tanaka, Y., Tomoyasu, Y., Tamura, S.I. 2000. Band structure of acoustic waves in phononic lattices: Two- dimensional composites with large acoustic mismatch, Physical Review B, Cilt. 62, No. 11, s. 7387. DOI: https://doi.org/10.1103/PhysRevB.62 7387
  • Gorishnyy, T., Ullal, C.K., Maldovan, M., Fytas, G., Thomas, E. Hypersonic phononic crystals, Physical Review Letters, Cilt. 94, No. , https://doi.org/10.1103/PhysRevLett. 115501 DOI: s. DOI:
  • Gomopoulos, N., Maschke, D., Koh, C., Thomas, E., Tremel, W., Butt, H.J., Fytas, G. 2010. One-dimensional hypersonic phononic crystals, Nano
  • Letters, Cilt. 10, No. 3, s. 980-984. DOI: 1021/nl903959r
  • Maldovan M, Narrow low- frequency management Physical Review Letters, Cilt. 110, No. , 2013, s.025902.
  • Theoretical thermocrystals control heat like sound, MRS Bulletin, Cilt. 38, No. 03, 2013, s.200.
  • Lacatena, V., Haras, M., Robillard. J. F., Monfray, S., Skotnicki, T., Dubois, E. 2015. Toward quantitative modeling thermocrystals, Letters, Cilt. 106, No. 11, s.114104. DOI: http://dx.doi.org/10.1063/1.4915619
  • Miyashita, T., Inoue, C. 2001. Numerical transmission properties of sonic crystals by finite- difference
  • Japanese Journal of Applied Physics, Cilt. 40, No. 5S, s.3488. DOI: http://dx.doi.org/10.1143/JJAP.40.34
  • Miyashita, T. 2005. Sonic crystals and sonic wave-guides, Measurement
  • Science and Technology, Cilt. 16, No. 5, s. http://dx.doi.org/10.1088/0957- /16/5/R01
  • Hsiao, F.L., Khelif, A., Moubchir, H., Choujaa, A., Chen, C.C., Laude, V. complete band gap of a phononic crystal slab, Physical Review E, Cilt. 76, No. https://doi.org/10.1103/PhysRevE.76 056601
  • Vasseur, J., Hladky-Hennion, A. C., Djafari-Rouhani, B., Duval, F., Dubus, B., Pennec, Y., Deymier, P.A. 2007. Waveguiding and heat thermocrystals, Palucka T, Nano Focus: of silicon Applied Physics investigations of and waveguide time-domain method, R47. DOI: Waveguiding inside the , s.056601. DOI: in two-dimensional piezoelectric phononic crystal plates,
  • Journal of Applied Physics, Cilt. 101, No. http://dx.doi.org/10.1063/1.2740352
  • Benchabane, S., Djafari-Rouhani, B., Laude, V. 2004. Guiding and bending of acoustic waves in highly confined phononic crystal waveguides, Applied
  • Physics Letters, Cilt. 84, No. 22, s.4400-4402. http://dx.doi.org/10.1063/1.1757642
  • Wu, F., Hou, Z., Liu, Z., Liu, Y. 2001.
  • Point defect states in two-dimensional phononic crystals, Physics Letters A, Cilt. 292, No. 3, s.198-202. DOI: http://dx.doi.org/10.1016/S0375- (01)00800-3 Wu, F., Liu, Z., Liu, Y. 2004.
  • Splitting and tuning characteristics of the point defect modes in two- dimensional Physical Review E, Cilt. 69, No. 6, s.066609. 1103/PhysRevE.69.066609
  • Zhao, D., Liu, Z., Qiu, C., He, Z., Cai, F., Ke, M. 2007. Surface acoustic waves in two-dimensional phononic crystals:
  • Dispersion relation and the eigenfield distribution of surface modes, Physical Review B, Cilt. 76, No. 14, s.144301. DOI: https://doi.org/10.1103/PhysRevB.76 144301 DOI: Khelif, A., Choujaa, A., DOI: phononic crystals, DOI:
  • Jia, H., Ke, M., He, Z., Peng, S., Liu, G., Mei, X., Liu, Z. 2009. Experimental demonstration of surface acoustic waves in two-dimensional phononic crystals with fluid background, Journal of Applied Physics, Cilt. 106, No. 4, s.044512. http://dx.doi.org/10.1063/1.3200964
  • Cicek, A., Gungor, T., Kaya, O.A., Ulug, B. 2015. Guiding airborne sound through surface modes of a two- dimensional phononic crystal, Journal of Physics D: Applied Physics, Cilt. 48, No. DOI: , s.235303. DOI: s.78-86. DOI: acoustic waves in crystal, phononic DOI: , s.255301. DOI:
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi