Fermentatif Hidrojen Üretiminin ?-Selüloz İle Anaerobik Çamur Ve Sığır Gübresi Karışımlarını Kullanarak Değerlendirilmesi

Anaerobik karışık kültür ve sığır gübresi karışımları ile kesikli deneylerde ?-selülozun (2 ±1 g L-1) bio-hidrojen üretim performansı değerlendirilmiştir. Anaerobik çamur (AÇ) ve sığır gübresi (SG); 1/ 2- 1/ 15 arasında değişen giriş biyomas oranlarında karıştırılarak en iyi hidrojen üretim verimi ve miktarını veren optimum AÇ/ SG oranı saptanmıştır. Ayrıca AÇ ve SG karıştırılmadan hem ?-selüloz hem de glukoz üzerindeki hidrojen üretimleri, karışımların performansları ile karşılaştırıl -mıştır. En yüksek hidrojen oluşumu (HF = 10 mmol L-1 kültür), üretim verimi (13 mmol H2 g -1 selüloz) AÇ/SG oranı 1/5 olduğunda elde edilmiştir. Kültürler ayrı ayrı, kayda değer hidrojen üretim verimleri vermesine rağmen, karışımlardan daha düşük değerlerde kalmıştır. Deneyler sonucuda elde edilen en iyi AÇ/ SG oranı olan 1/5 ile yeni bir deney yapılmış ve zamana karşı hidrojen üretim performansını belirleyen değerlerden hidrojen üretimi, yüzde selüloz dönüşümü, 192. saatte sırasıyla 10.88 mmol H2 L-1 kültür ve %52 olarak bulunmuştur. Asetik asit en yüksek uçucu yağ asidi olarak tayin edilmiştir.

Utilization of Fermentative Hydrogen Production From ?-Cellulose by Combining Anaerobic Sludge and Cattle Manure

Batch fermentation experiments were performed for utilizing bio-hydrogen production from ?- cellulose solution (2 ±1 g L-1) by combining anaerobic mixed culture and cattle manure. Mixed cultures of anaerobic sludge (AÇ) and cattle manure (SG) were used with different initial biomass ratios, changed between 1/ 2 and 1/ 15, in order to determine the optimum AÇ/ SG ratio yielding the highest hydrogen gas formation and yield. Hydrogen production by only AÇ and SG mixed cultures were also realized along with the combined fermentations by growing them on ?cellulose and glucose. The highest hydrogen formation (HF = 10 mmol L-1 culture), hydrogen yield (13 mmol H2 gr-1 cellulose) were obtained with AÇ/ SG ratio of 1/5. Hydrogen fermentations done with strains alone also yielded considerable hydrogen gas amounts, however less than the mixed ones. The best AÇ/SG ratio of 1/5 were tested for its hydrogen gas formation yield, percent cellulose conversion with time and 10.88 mmol H2 L-1culture, 52 %, were found respectively at 192 h. Acetic acid was the highest volatile fatty acid obtained in the experiments.

___

  • [1] Kapdan IK, Kargi F. 2006. Biohydrogen production from waste materials. Enzyme Microb. Technol. Cilt. 38, s. 569-582. DOI:10.1016/j.enzmictec.2005.09. 015
  • [2] Kotay S.M., Das D. 2008. Biohydrogen as a renewable energy resource - Prospects and potentials. Int J Hydrogen Energy. Cilt. 33, s. 258-263. DOI: 10.1016/j.ijhydene.2007.07.031
  • [3] Manish S., Banerjee R. 2008. Comparison of biohydrogen production processes. Int J Hydrogen Energy. Cilt 33, s. 279- 286. DOI: 10.1016/j.ijhydene.2007.07.026
  • [4] Ni M., Leung, D.Y.C., Leung M.K.H., Sumathy K. 2006. An overview of hydrogen production from biomass. Fuel Process. Technol. Cilt 87, s. 461-472. DOI: 10.1016/j.fuproc.2005.11.003
  • [5] V-Vazquez I, P-Valardo M. 2009. Hydrogen Production by fermentation consortia. Renewable and Sustainable Energy Reviews. Cilt 13:5, s. 1000-1013. DOI: 10.1016/j.rser.2008.03.003
  • [6] Gupta P., Samant K. and Sahu A. 2012. Isolation of CelluloseDegrading Bacteria and Determination of Their Cellulolytic Potential. Int. of Microbiology. International Journal of Microbiology. Cilt. 2012, s. 5 sayfa. DOI: 10.1155/2012/578925
  • [7] Levin D. B., Carere C. R., Cicek N., Sparling R. 2009. Challenges for bio-hydrogen production via direct lignocellulose fermentation Int. J. Hydrogen Energy. Cilt 34, s. 7390- 7403, DOI: 10.1016/j.ijhydene.2009.05.091
  • [8] Geng A., He Y., Qian C., Yan X., Zhou Z. 2010. Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium Bioresource Technology. Cilt 101:11, s. 4029-4033.DOI: 10.1016/j.biortech.2010.01.042
  • [9] Kaparaju P., Serrano M., Thomsen A. B., Kongjan P., Angelidaki I. 2009. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept . Bioresource Technology. Cilt 100:9, s. 2562-2568. DOI: 10.1016/j.biortech.2008.11.011
  • [10] Lay J.-J. 2001. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotech. and Bioeng. Cilt 74:4, s. 280-287. DOI: 10.1002/bit.1118
  • [11] Ren Z, Ward T.E., Logan B.E., Regan J.M. 2007. Characterization of the cellulolytic and hydrogenproducing activities of six mesophilic Clostridium species. J Appl Microbiol. Cilt 103: 6, s. 2258-66. DOI: 10.1111/j.1365- 2672.2007.03477.x
  • [12] Saratale G.D., Chen S.-D., Lo Y.-C., Saratale R. G.and Chang J. S. 2008. Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation- a review. J. Science and Industrial Research. Cilt 67, s. 962-979. DOI: http://nopr.niscair.res.in/handle/123 456789/2424
  • [13] Wang A., Gao L., Ren N., Xu J. and Liu C. 2009. Bio-hydrogen production from cellulose by sequential co-culture of cellulosic hydrogen bacteria of Enterococcus gallinarum G1 and Ethanoigenens harbinense B49. Biotechnology Letters. Cilt 31:9, s. 1321-1326. DOI: 10.1007/s10529-009-0028-z
  • [14] Girija D, Deepa K, Xavier Francis, Antony Irin, Shidh P R. 2013. Analysis of cow dung microbiota-- A metagenomic approach Indian Journal of Biotechnology. Cilt. 12, s. 372-378. DOI: http://hdl.handle.net/123456789/ 21863
  • [15] Hagenkamp-Korth F., Ohl S., Hartung E. 2015. Effects on the biogas and methane production of cattle manure treated with urease inhibitor, Biomass and Bioenergy. Cilt. 75, s. 75-82. DOI: 10.1016/j.biombioe.2015.02.014
  • [16] León E., Martín M. 2016. Optimal production of power in a combined cycle from manure based biogas, Energy Conversion and Management. Cilt. 14, s. 89-99. DOI: 10.1016/j.enconman.2016.02.002
  • [17] Tsapekos P, Kougias P.G, Treu L., Campanaro S., Angelidaki I. 2017. Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production, Applied Energy. Cilt. 185:1, s. 126-135. DOI: 10.1016/j.apenergy.2016.10.081
  • [18] Ozmihci S, Kargi F. 2010a. Comparison of different mixed cultures for bio-hydrogen production from ground wheat starch by combined dark and light fermentation. J.Ind.Microbiol Biotechnol. Cilt. 37, s. 341-347. DOI: 10.1007/s10295-009-0679-8
  • [19] Ozmihci S, Kargi F. 2010b. Effects of starch loading rate on performance of combined fed batch fermentation of ground wheat for bio-hydrogen production. Int. J. Hydrogen Energy. Cilt. 35, s. 1106-1111. DOI: 10.1016/j.ijhydene.2009.11.048
  • [20] Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem Cilt. 8, s. 350-366. DOI: 10.1021/ac60111a017
  • [21] Kargi F, Ozmihci S. 2006. Utilization of cheese whey powder for ethanol fermentations: effects of operating conditions. Enzyme Microb Technol Cilt. 38, s. 711- 718. DOI: 10.1007/s00449-006- 0101-0
  • [22] Greenberg, A. E., Clesceri, L. S., Eaton, A. D., 2005. Eds. Standard methods for the examination of water and wastewater. 21st edn. American Public Health Association (APHA), Washington DC, USA
  • [23] Datar R. Huang J. Maness P.C. Mohagheghi A., Czernik S., Chornet E. 2007. Hydrogen production from the fermentation of corn stover pretreated with a steam explotion process. Int. J. Hydrogen Energy. Cilt. 32, s. 932-939. DOI: 10.1016/j.ijhydene.2006.09.027
  • [24] Cheong D.-Y. ve Hansen R. 2007. Feasibility of hydrogen production in thermophilic mixed fermentation by natural anaerobes. Bioresource Tecnology. Cilt. 98, s. 2229-2239. DOI: 10.1016/j.biortech.2006.09.039
  • [25] Wang A., Ren N., Shi Y., Lee D-J. 2008. Bioaugmented hydrogen production from microcrystalline cellulose using co-culture-- Clostridium acetobutylicum X9 and Ethanoigenens harbinense B49. Int. J. Hydrogen Energy. Cilt. 33, s. 912- 917. DOI: 10.1016/j.ijhydene.2007.10.017
  • [26] Ren N.-Q., Xu J.-F., Gao L.- F., Xin L., QiuJ., Su D.-X. 2010., Fermentative bio-hydrogen production from cellulose by cow dung compost enriched cultures. Int. J. Hydrogen Energy. Cilt. 35:7, s. 2742-2746. DOI: 10.1016/j.ijhydene.2009.04.057
  • [27] Fan Y.-T., Xing Y., Ma H.-C., Pan C.- M., Hou H.-W. 2008. Enhanced cellulose-hydrogen production from corn stalk by lesser panda manure. Int. J. Hydrogen Energy. Cilt. 33:21, s. 6058-6065. DOI: 10.1016/j.ijhydene.2008.08.005