HİDROLİK EYLETİMLİ BİR KANATÇIK YÜKLEME CİHAZININ DİNAMİK MODELLEMESİ VE TÜMLEVLİ GERİ ADIMLAMA YÖNTEMİ KULLANILARAK DENETİMİ

Kanatçık yükleme cihazları, havacılık uygulamalarında kullanılan tahrik (eyletim) sistemleri üzerindeki harici yük etkisi benzetimlerini yapmak amacıyla geliştirilmektedir. Bahsedilen uygulamalarda, kanatçık tahrik sistemlerinin aerodinamik kuvvet ve momentler altındaki başarımları ele alınması gereken önemli hususlardan biridir. Göz önüne alınan azami kuvvet ve moment değerlerine elektromekanik, hidrolik veya pnömatik eyletimli olabilmektedir. Bant genişliği gereksinimi, eyletim şekline karar vermedeki bir diğer belirleyici unsur olarak öne çıkmaktadır. Bu bağlamda, daha yüksek kuvvet ve moment oluşturma kapasitesi ve yüksek bant genişliği dolayısıyla hidrolik eyletim daha avantajlı bir seçenek olarak belirmektedir. Bu çalışmada, hidrolik eyletimli bir kanatçık yükleme cihazı için tümlevli geri adımlama yöntemi kullanılarak denetim sistemi tasarlanması hususu ele alınmaktadır

DYNAMIC MODELING AND CONTROL OF A HYDRAULIC FIN LOADING SYSTEM USING INTEGRAL BACKSTEPPING METHOD

Fin loading systems are utilized to simulate the effects of the external inputs on actuation systems in aerial applications. In those systems, the performance of the fin actuation systems subject to aerodynamic force and moment effects is one of the major issues to be handled. Depending on the amount of the maximum force and torque values, the loading systems are in the type of electromechanically-, hydraulically-, or pneumaticallyactuated. The bandwidth requirement is another determining factor in deciding on the type of the actuation. In this scene, the hydraulic actuation systems are more advantageous than the others because of their large force and moment execution capabilities as well as high bandwidth properties. In this study, the issue of designing a control system for a hydraulicallyactuated fin loading system is investigated regarding the integral backstepping method. *Sorumlu yazar: bulent.ozkan@tubitak.gov.tr 1. Introduction Performance of the fin actuation systems utilized in aerial vehicles is directly dependent on their achievement against aerodynamic effects acting on the actuation surfaces. In order to guarantee their success, it is necessary that the related verification tests be completed prior to the field implementation

___

  • Backstepping Force Control of Hydraulic Load Simulator: Theory and Experiments, Journal of Mechanical Technology, Vol. 28, No. 4, pp. 1507. DOI: 10.1007/s12206- 0137-z Robust Science and Campos, J., Lewis, F. L., Davis, L.,
  • Ikegana, S. 2000. Backstepping
  • Based Fuzzy Logic Control of Active Vehicle Suspension Systems. American Chicago, Illinois, USA, 4030-1035. Conference,
  • Ba, D. X., Ahn, K. K., Truong, D. Q., Park, H. G. 2016. Integrated Model- based Backstepping Control for an Electro-Hydraulic System, Control of Electro
  • Guo, K., Wei, J., Fang, J., Feng, R., Wang, X. 2015. Position Tracking Control
  • Single-Rod Actuator Based on Extended Disturbance Observer, Mechatronics, Vol. 27, pp. 47-56. DOI: 10.1016/j.mechatronics.2015. 003
  • Wang, C., Jiao, Z., Wu, S, Shang, Y. A Practical Nonlinear Robust Control Approach of Electro- Hydraulic Load Simulator, Chinese Journal of Aeronautics, Vol. 27, No. DOI: 10.1016/j.cja.2014.04.011
  • Wang, X., Wang, S., W., Zhao, P. Adaptive Fuzzy Torque Control of Passive Torque Servo Systems Based on Small Gain Theorem Stability, Chinese Journal of Aeronautics, Vol. 25, pp. 906-916. DOI: (11)60461-5
  • Yao, J., Jiao, Z., Yao, B. 2012. Robust
  • Control for Static Loading of Electro-hydraulic Load Simulator with Chinese Journal of Aeronautics, Vol. 25, pp. 954-962. DOI: 1016/S1000-9361(11)60467-6
  • Liu, R. 1998. Nonlinear Control of Electro-Hydraulic
  • Theory and Experiment. University of Illinois at Urbana Champaign, MSc. Thesis, USA. Härkegård, O. 2003. Backstepping and Control Allocation with
  • Applications to Flight Control. Linköping Dissertation, 231p, Sweden. PhD. Aguiar, A. P., Hespanha, J. P., Kokotović, P. V. 2004. Path- following for Non-minimum Phase
  • System Removes Performance Limitations. Proceeding of the Center for Control Engineering and Computation, California, Santa Barbara, USA. Menon, P. K., Ohlmeyer, E. J. 2004. Computer-aided
  • Nonlinear Autopilots for Missiles, Nonlinear Studies, Vol. 11, No. 2, pp. 173-198. of Özkan, B. 2009. Dynamic Modeling and Control of a Hydraulic Fin Loading
  • Backstepping Method, 5th Ankara International Conference, Middle East Technical University, Ankara, Turkey. Using Aerospace Ercan, Y. 1994. Fluid Power Control Theory
  • University Publication, Ankara, Turkey, 236p. Gazi Ogata, K. 1990. Modern Control Engineering,
  • International Editions, Second Edition, USA, 963p. Joseph, A., Geetha, S. 2007.
  • Application of Backstepping for the Control of Launch Vehicle, IE(I) Journal-AS, Vol. 8, pp. 13-19. Tsai, F. K., Lin, J. S. 2003.
  • Backstepping Control Design of Degree Inverted Pendulum Systems, 2003 Automatic Control Conference, 143. Taiwan,
  • Özkan, B. 2005. Dynamic Modeling,
  • Guidance, and Control of Homing Missiles, PhD. Dissertation, Middle East Technical University, 236p, Ankara, Turkey, 2005. Kealy, T., O'Dwyer, A. 2003.
  • Analytical ISE Calculation and Optimum Control System Design, Irish Conference, University of Limerick, Ireland. Systems
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: 3
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi