DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

Bu çalışmada, ultrasonikasyon işleminde prob çapının, TiO2 ve ZrO2 tozlarının yapısı ve morfolojik özellikleri üzerine etkisi incelenmiştir. Tozlara7 mm ve 40 mm çaplarındaki titanyum prob ile üretilen yüksek yoğunluklu ultrases dalgalarına maruz bırakılmıştır. X-ışını Kırınım (XRD) analizi ile ultrasonikasyon işlemi uygulanan tozlarda bazı yüzeylerin ortadan kaybolduğu ve bazı yeni yüzeylerin ortaya çıktığı bulunmuştur. Taramalı Elektron Mikroskopi (SEM) analizi bu yöntemle mikronaltı tane boyutlu tozların elde edilebildiğini göstermiştir.Büyük genlikli ultrasesüreten 7 mm çaplı probun küçük genlikli ultrases üreten 40 mm çaplı probdan daha etkili olduğu görülmüştür

EFFECT OF PROBE DIAMETER ON STRUCTURE AND MORPHOLOGICAL PROPERTIES OF TiO2 AND ZrO2 POWDERS IN ULTRASONICATION PROCESS

The effect of the probe radius on structural and morphological properties of TiO2 and ZrOpowders in ultrasonication process have investigated in this study. The powders have exposed the high-intense ultrasound generated by the titanium probes diameter of 7 mm and 40 mm. X-ray diffraction (XRD) analysis proved that the some phases of the samples have disappeared while the some new phases of them have emerged after ultrasonication. Scanning Electron Microscopy (SEM) showed that the submicron particles could be obtained by the method. 7 mm probe generated by a high amplitude ultrasound was more effective than 40 mm diameter generated by a lower amplitude ultrasound

___

  • Piconi, C. and Maccauro, G. (1999) Zirconia as a ceramic biomaterial. Biomaterials, 20, 1-25. http://dx.doi.org/10.1016/S0142-9612(98)00010-6
  • Kelly, J.R. and Denry, I. (2008) Stabilized zirconia as a structural ceramic: an overview. Dental Materials : Official Publication of the Academy of Dental Materials, 24, 289-98. http://dx.doi.org/10.1016/j.dental.2007.05.005
  • Tsukuma, K., Kubota, Y. and Tsukidate, T. (1983) Thermal and mechanical properties of Y2O3-stabilized tetragonal zirconia polycrystals.
  • Nilüfer, İ., Gökçe, H., Çimenoğlu, H. and Öveçoğlu, L. (2014) Investigation of the Effects of Ceria Addition on the Properties of Zirconia. Mühendis ve Makina, 55, 31-3.
  • Chevalier, J., Gremillard, L., Virkar, A. V. and Clarke, D.R. (2009) The Tetragonal- Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends. Journal of the American Ceramic Society, 92, 1901-20. http://dx.doi.org/10.1111/j.1551- 2916.2009.03278.x
  • Manicone, P.F., Rossi Iommetti, P. and Raffaelli, L. (2007) An overview of zirconia ceramics: basic properties and clinical applications. Journal of Dentistry, 35, 819-26. http://dx.doi.org/10.1016/j.jdent.2007.07.008
  • Bocanegra-Bernal, M.H. and Torre, S.D. de la. Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics. Journal of Materials Science, http://dx.doi.org/10.1023/A:1021099308957 Academic Publishers. 37, 4947-71.
  • Lide, D. (2007) CRC Handbook of Chemistry and Physics, Internet Version, 2007. Taylor and Francis, Boca Raton, FL (Www.hbcpnetbase Com),.
  • Tusseau-Nenez, S., Ganne, J.P., Maglione, M., Morell, a., Niepce, J.C. and Paté, M. (2004) BST ceramics: Effect of attrition milling on dielectric properties. Journal of the European http://dx.doi.org/10.1016/j.jeurceramsoc.2003.11.019 Ceramic Society, 24, 3003-11.
  • Liu, C. and Liu, P. (2014) Microstructure and dielectric properties of BST ceramics derived from high-energy ball-milling. Journal of Alloys and Compounds, Elsevier B.V. 584, 114-8. http://dx.doi.org/10.1016/j.jallcom.2013.09.031
  • Vijatovic Petrovic, M.M., Bobic, J.D., Ursic, H., Banys, J. and Stojanovic, B.D. (2013) The electrical properties of chemically obtained barium titanate improved by attrition milling. http://dx.doi.org/10.1007/s10971-013-3075-9 of Sol-Gel Science and Technology, 67, 267-72.
  • Manzoor, U. and Kim, D.K. (2007) Synthesis of nano-sized barium titanate powder by solid-state reaction between barium carbonate and titania. Journal of Materials Science & Technology, 23, 655-8.
  • Markovic, S., Miljkovic, M., Jovalekic, C., Mentus, S. and Uskokovic, D. (2009) Densification, Microstructure, and Electrical Properties of BaTiO 3 (BT) Ceramics Prepared from Ultrasonically De-Agglomerated BT Powders. Materials and Manufacturing http://dx.doi.org/10.1080/10426910903031750 Taylor & Francis Group. 24, 1114-23.
  • Badr, M.H., El-Deen, L.M.S., Khafagy, A.H. and Nassar, D.U. (2011) Structural and mechanical properties characterization of barium strontium titanate (BST) ceramics. Journal of Electroceramics, 27, 189-96. http://dx.doi.org/10.1007/s10832-011-9664-5
  • Markovic, S., Mitric, M., Starcevic, G. and Uskokovic, D. (2008) Ultrasonic de- agglomeration of barium titanate powder. Ultrasonics Sonochemistry, 15, 16-20. http://dx.doi.org/10.1016/j.ultsonch.2007.07.008
  • Suslick, K.S., Didenko, Y., Fang, M.M., Hyeon, T., Kolbeck, K.J., McNamara III, W.B. et al. (1999) Acoustic cavitation and its chemical consequences. Philosophical Transactions http://dx.doi.org/10.1098/rsta.1999.0330 the Royal Society A, 357, 335-53.
  • Ashokkumar, M., Lee, J., Kentish, S. and Grieser, F. (2007) Bubbles in an acoustic field: an overview. Ultrasonics Sonochemistry, 14, 470-5.
  • Ashokkumar, M. (2011) The characterization of acoustic cavitation bubbles-an overview. Ultrasonics Sonochemistry, 18, 864-72.
  • Markovic, S., Mitric, M., Starcevic, G. and Uskokovic, D. (2008) Ultrasonic de- agglomeration of barium titanate powder. Ultrasonics Sonochemistry, 15, 16-20. http://dx.doi.org/10.1016/j.ultsonch.2007.07.008
  • Hielscher. (2016) Ultrasonic Sonotrodes, Flow Cells & Accessories [Internet].