BALASTLI HIZLI TREN HATLARI İÇİN CAM LİFİ TAKVİYELİ KABLO KANALLARI

Önüretimli beton kablo kanalları yüksek hızlı tren hatlarının sinyalizasyon ve iletişim altyapısını içerirler. Bu kanallar sıklıkla betonarme olarak üretilirler. Ankara-Konya Yüksek Hızlı Tren projesi kapsamında çok sınırlı bir bütçe içerisinde yapılan bir çalışmada, cam lifi takviyeli harcın sıradan betonarme bir kanalın ağırlığını %80 oranında azaltabileceği tespit edilmiştir. Bu çalışma içerisinde tasarımın deneysel ve analitik kısmı, tam ölçekli bir kablo kanalının üretimi ve yükler altında tetkik edilmesi ile zamana bağlı çevresel aşınma etkilerinin araştırılmasına yönelik deneysel çalışma sunulacaktır

PREFABRICATED GLASS FIBER REINFORCED CABLE DUCTS FOR BALLASTED HIGH SPEED RAILWAYS

Prefabricated concrete cable ducts embody the transmission lines for the signaling and communication infrastructure of the high-speed railways. Reinforced concrete is widely used to fabricate cable ducts. A research conducted within a limited budget for the Ankara-Konya High Speed Railway project in Turkey showed that glass fiber reinforced mortar could reduce the weight of an ordinary reinforced concrete cable duct by more than 80%. This paper presents the experimental and the analytical work for the design, testing and fabrication of full-scale glass fiber reinforced cable duct samples and the experimental study to evaluate the possible effects of time related chemical corrosion on their mechanical performances

___

  • 1. Sawhney, R; Muppaneni, H; Zhang, GW ; Yang, HB., Natural Interaction – A Mechanism for Mistake Proofing Operator’s Errors on Trains, PROCEEDING OF THE ASME JOINT RAIL CONFERENCE, (2013)
  • 2. TCDD – Ankara-Konya High Speed Railway Signaling and Communication Infrastructure Specification (2009)
  • 3. G.B. Kim, K. Pilakoutas, P. Waldron. Thin FRP/GFRC structural elements, Cement and Concrete Composites, Elsevier, 122–137 (2008)
  • 4. Lichtberger, L., Track Compendium, Eurail Press, Second Edition. 2011.
  • 5. Soong, WH ; Raghavan, J; Rizkalla, SH., Fundamental mechanisms of bonding of glass fiber reinforced polymer reinforcement to concrete, Construction and Building Materials, Elsevier, Volume 25 issue 6 (2011)
  • 6. Cavdar, A. Investigation of freeze-thaw effects on mechanical properties of fiber reinforced cement mortars. COMPOSITES PART B-ENGINEERING. Volume: 58 Pages: 463-472. March 2014.
  • 7. Yun, H.D; Rokugo, K. Freeze-thaw influence on the flexural properties of ductile fiber-reinforced cementitious composites (DFRCCs) for durable infrastructures. COLD REGIONS SCIENCE AND TECHNOLOGY. Volume: 78 Pages: 82-88. July 2012.
  • 8. International GRCA Technical Committee. Practical Design Guide for Glass Reinforced Concrete (2011)
  • 9. Precast Prestressed Concrete Institute. Recommended Practice for Glass Fiber Reinforced Concrete Panels. (2001)
  • 10. Banthia, N; Bindiganavile, V; Jones, J; Novak, J. Fiber-reinforced concrete in precast concrete applications: Research leads to innovative products. PCI Journal. (Summer2012)
  • 11. PCI Committee on Glass Fiber Reinforced Concrete Panels and Task Group. 2001. GFRC: Recommended Practice for Glass Fiber Reinforced Concrete Panels. MNL-128. 4th ed. Chicago, IL: PCI.