ANALYSIS OF SINGLE PARTICLE IMPACT BREAKAGE DISTRIBUTION FUNCTIONS OF A COLEMANITE ORE BY DROP WEIGHT TECHNIQUE

Kolemanit cevherinin tek tane darbe kırılma dağılımı fonksiyonları Narayanan [1] tarafından geliştirilen standard test yöntemleri ve veri değerlendirme metodolojisi kullanılarak tahmin edilmiştir. Bu amaçla, modifiye edilmiş JK Tech ağırlık düşürme test aletinin [2] manuel versiyonu kullanılmıştır. Kırılma testi sonuçları özgül ufalama enerjisi (Ecs) ve t10 boyut dağılımı parametresi ile temsil edilen darbe kırılması ürün inceliği arasındaki ilişkinin kurulmasında kullanılmıştır. Napier Munn vd., [3] tarafından verilen Ecs-t10 ufalama modeli kırılma testi sonuçları için sınanmıştır. Test sonuçları Ecs-t10 ufalama modeline başarılı bir şekilde uyum sağlamıştır. t-aile eğrisi yaklaşımı [1, 4, 5] özgül kırılma fonksiyonlarının oluşturulmasında kullanılmıştır. t10-tn aile eğrileri modellenmiş ve eğrilerin ampirik regresyon denklemleri kırıcı modelleri için kırılma fonksiyonunun farklı enerji seviyelerinde oluşturulması için önerilmiştir

KOLEMANİT CEVHERİNİN TEK TANE DARBE KIRILMA DAĞILIMI FONKSİYONLARININ AĞIRLIK DÜŞÜRME TEKNİĞİ İLE ANALİZİ

Single particle impact breakage distribution functions of a colemanite ore were estimated using the standard test methods and data evaluation methodology developed by Narayanan [1]. For this purpose, a modified manual version of a JK Tech drop weight test device [2] was used. Breakage test results were used to establish the relationship between specific comminution energy (Ecs) and impact breakage product fineness which was represented by the size distribution parameter t10. Ecs-t10 comminution model given by Napier Munn et.al [3] was validated for the breakage test results. Ecs-t10 comminution model was successfully fitted to the breakage test results. t-family curve approach [1, 4, 5] was used to re-construct specific breakage functions. t10-tn family curves were modelled and empirical regression equations were proposed to reconstruct breakage functions at different impact energy levels which could be used in models of crushers

___

  • [1] Narayanan, S.S. Development of a Laboratory Single Particle Breakage Technique and Its Application to Ball Mill Modelling and Scale-up, PhD Thesis. JKMRC, The University of Queensland, Australia, 1985.
  • [2] Brown, D., Grimes, A. Procedure for JKTech drop weight breakage test, JKTech Operating Manual, The University of Queensland, Australia, 2005.
  • [3] Napier Munn, T.J., Morrell, S, Morrison, R.D, Kojovic, T, Mineral Comminution Circuits Their Operation and Optimization. JKMRC Monograph Series in Mining and Mineral Processing, Australia, Brisbane: No. 2, The University of Queensland, 2005.
  • [4] Narayanan, S.S. Single particle breakage tests: a review of principles and applications to comminution modelling, Bull. Proc. Australas. Inst. Min. Metall., 291(4), 1986, p49-58.
  • [5] Narayanan, S.S. Modelling the performance of industrial ball mills using single particle breakage data, International Journal of Mineral Processing, 20, 1987a, p211- 228.
  • [6] Kogel, E.J. Trivedi, C.N. Barker, M.J. Krukowski, T.S. Industrial Minerals and Rocks, 7 th Edition, Society for Mining, Metallurgy and Exploration, Inc. 2006.
  • [7] Weedon, D.M. A perfect matrix model for ball mills, Minerals Engineering, Permagon Pres.,14 (10), 2001, p1225-1236.
  • [8] Andersen, J.S. Development of a Cone Crusher Model, M.Eng.Sc. Thesis, The University of Queensland, JKMRC, 1988.
  • [9] Man, Y.T. A Model-based Scale-up Procedure for Wet, Overflow Ball Mills, PhD Thesis, JKMRC, Department of Mining, Minerals and Materials Engineering, The University of Queensland, 2000.
  • [10] Weichert, R. Herbst, J.A. An ultrafast load cell device for measuring particle breakage, Nürnberg: Proceedings, 1st World Congress on Particle Technology, Part 2, 1986. p3- 14.
  • [11] Fandrich, R.G. Clout, J.M.F. Bourgeois, F.S. The CSIRO Hopkinson Bar facility for large diameter particle breakage, Minerals Engineering, 11 (9), 1998, p861-869.
  • [12] Tavares, L.M. King, R.P. Single particle fracture under impact loading, International Journal of Mineral Processing, 12 (1), 1998, p43-50.
  • [13] Bourgeois, F.S. Banini, G.A. A portable load cell for in-situ ore impact breakage testing, International Journal of Mineral Processing, 65, 2002, p31-54.
  • [14] Austin, L.G. Luckie, P.L. Methods for determination of breakage distribution parameters, Powder Technology, 5, 1971/72, p215-222.
  • [15] Weller, K.R. Sterns, U.J. Artone, E. Bruchard, W.J. Multicomponent models of grinding and classification for scale-up from continuous small or pilot scale circuits, International Journal of Mineral Processing, 22, 1988, p119-147.
  • [16] Zhang, Y.M. Napier-Munn, T.J. Kavetsky, A. Application of comminution and classification modelling to grinding of cement clinker, Trans. IMM. 97: 1988, C207- C214.
  • [17] Austin, L.G. Weller, K.R. Simulation and scale-up of wet ball mills. XIV International Mineral Processing Congress, Toronto, Canada: October 17-23, 1982, p8.1-8.24.
  • [18] Hukki, R.T. Proposol for a solomonic settlement between the theories of von Rittenger, Kick and Bond. Trans., S.M.E/A.I.M.E, 220, 1961, p403-408.
  • [19] Yashima, S. Kanda, Y. Sano, S. Relationships between particle size and fracture energy or impact velocity required to fracture as estimated from single particle crushing, Powder Technology, No.51, 1987, p277-282.
  • [20] Schöenert, K. Fundamentals of Particle Breakage, Course Notes, Johannesburg: University of Witwatersrand, Division of Continuing Engineering Education, 1988, Section F6.
  • [21] Meloy, T.P. Preti, U. Locked particles three phase volume frequency distribution, Powder Technology, 71, 1992, p273-279.
  • [22] Awachie, S.E.A. Development of Crusher Models Using Laboratory Breakage Data, PhD Thesis, JKMRC, The University of Queensland, 1983.
  • [23] Leung, K. An Energy-based Ore Specific Model for Autogeneous and SemiAutogeneous Grinding, PhD Thesis, JKMRC, The University of Queensland, 1987.
  • [24] Narayanan, S.S. Lean P.J. Baker, D.C. Relationship between breakage parameters and process variables in ball milling-An industrial case study, International Journal of Mineral Processing, 20, 1987b, p241-251.
  • [25] Morrell, S. Man, Y.T. Using modelling and simulation for the design of full-scale ball mill circuits, Minerals Engineering, 10 (12), 1997, p1311-1327.
  • [26] Genç, Ö. Benzer, A.H. Ergün, Ş.L. Analysis of single particle impact breakage characteristics of raw and HPGR-crushed cement clinkers by drop weight testing, Powder Technology, 259, 2014, p37-45.
  • [27] Narayanan, S.S. Whiten, W.J. Breakage characteristics of ores for ball mill modelling, Proc. AusIMM, 286, 1983, p31-39.
  • [28] Narayanan, S.S. Whiten W.J. Determination of comminution characteristics from single particle breakage tests and its application to ball mill scale-up, Trans. Inst. Min. Metall. Sect. C, September, 1988, p115-124.
  • [29] Shi, F. Kojovic, T. Validation of a model for impact breakage incorporating particle size effect, International Journal of Mineral Processing, 82( 3), 2007, p156–163.
  • [30] Zhang, Y.M. Simulation of Comminution and Classification in Cement Manufacture, Ph.D. Thesis, South University B.E. (Central-South University of Technology), China, 1992.
  • [31] King, R.P. Modelling and Simulation of Mineral Processing Systems, Great Britain: Butterworth-Heinemann, 2001.
  • [32] Lynch, A.J. Mineral Crushing and Grinding Circuits, Their Simulation, Optimization, Design and Control, Elsevier Scientific Publishing Co., Amsterdam, 1977, p1-65.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi