Triklosanın Foto-Fenton Benzeri Oksidasyon Yöntemi ile Parçalanması

Triklosan, antibakteriyel kişisel bakım ürünlerinde en çok kullanılan aktif maddelerden biridir ve son yıllarda kullanımı artmıştır. Triklosanın sucul ortamda ki varlığı nedeniyle son yıllarda bu konularda çalışan araştırmacıların dikkatini çekmiştir. Bu çalışmada, triklosanın ileri oksidasyon yöntemlerinden fotoFenton yöntemi ile arıtılması ve yan ürünlerinin oluşumu araştırılmıştır. Triclosan, H2O2 ve Fe(III) derişimlerinin triklosan giderimine olan etkileri, Box-Behnken istatistiksel deney tasarımı ve yüzey cevabı analizi kullanılarak araştırılmıştır. Triklosan'ın tamamen parçalanması bir saatte gerçekleşirken tamamen mineralizasyonu gerçekleşmemiştir. 2,4-Diklorofenol ve 2,4,6Triklorofenol gibi bazı ara bileşiklerin oluştuğu gözlenmiştir. Foto-Fenton benzeri prosesinde, en yüksek triklosan giderimi (%97) için H22/Fe(III)/TCS oranının 50/5/5 olduğu saptanmıştır

Degradation of Triclosan by Photo-Fenton like Oxidation

Triclosan is one of the most used active ingredients in antibacterial personal care products and its usage increased in recent years. Triclosan has recently attracted the attention researchers from the fields of water treatment due to its existence in water environments. This study has been executed to investigate the removal of triclosan with Photo-Fenton like process and to observe by-product formation after oxidation. Effects of operational parameters namely the concentrations of Triclosan, HO2 and Fe(III) on oxidation of triclosan were investigated by using Box-Behnken statistical experiment design and the surface response analysis. Complete removal of triclosan was accomplished within a hour, however, complete mineralization was not occurred even within sixty minutes indicating formation of some intermediate compounds such as 2,4-Dichlorophenol H2O/Fe(III)/TCS ratio resulting by maximum triclosan removal (97%) was found to be 50/5/5, respectively. and 2,4,6-Trichlorophenol. Optimal

___

  • [1] Bedoux, G., Roig, B., Thomas, O., Dupont, V., Le Bot, B. 2012. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment, Environ Science Pollution Res. Vol.19, page.1044-1065.
  • [2] Reiss, R., Mackay, N., Habig, C., Griffin, J. 2002. An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States, Environmental Toxicology and Chemistry, Vol.21, page.2483-2492.
  • [3] NICNAS (National Industrial Chemicals Notification and Assessment Scheme), Priority Existing Chemical Assessment Report No. 30 Triclosan, Australia, 2009.
  • [4] Scientific Committee on Consumer Products (SCCP), Opinion on: Triclosan Retrieved from http://ec.europa.eu/health/ph_risk/comm ittees/04_sccp/docs/sccp_o_166.pdf on October, 02 2015.
  • [5] Gautam, P., Carsella, J. S., Kinney, C. A. 2014. Presence and trasport of the antimicrobials triclocarban and triclosan in a wastewater dominated stream and freshwater environment, Water Research, Vol.48, page.247-256.
  • [6] Perez, A.L., De Sylor, M.A. Slocombe, A.J. Lew, M.G. 2013. Triclosan occurrence in freshwater systems in the united states (1999-2012): a meta analysis, Environmental Toxicology and Chemistry, Vol.32 (7), page.1479-1487
  • [7] Tixier, C., Singer, H. P., Canonica, S., Stephan, R. 2002. Phototransformation of triclosan in surface waters: A relevant elimination process for this widely used biocide laboratory studies, field measurements, and modeling, Environmental Science and Technology, Vol.36, page.3482-3489.
  • [8] Sanchez-Prado, L., Llompart, M., Lores, M., Fernández-Alvarez, M., García-Jares, C., Cela, R. 2006. Further research on photo-SPME of triclosan, Analytical and Bioanalytical Chemistry, Vol.384, page.1548-1457.
  • [9] Canosa, P., Morales, S., Rodríguez, I., Rubí, E., Cela, R., Gómez M. 2005. Aquatic degradation of triclosan and formation of toxic chlorophenols in presence of low concentrations of free chlorine, Analytical and Bioanalytical Chemistry, Vol.383, page.1119-1126.
  • [10] Latch, D.E., Packer, J.L., Arnold, W.A., McNeill, K. 2003. Photochemical conversion of triclosan to 2,8- dichlorodibenzo-p-dioxin in aqueous solution, Journal of Photochemistry and Photobiology A: Chemistry, Short Communication, Vol.158, page.630-666.
  • [11] Ferrer, I. Mezcua, M. Jose Gomez, M., Thurman, M.E., Aguera, A., Hernando, M.D., Fernandez-alba, A.R. 2004. Liquid chromatography/time-of-flight mass spectrometric analyses for the elucidation of the photodegredation products of triclosan in wastewater samples, Rapid Communications in Mass Spectrometry, Vol.18, page.443-450.
  • [12] Esplugas, S., Yue, P.L., Pervez, M.I. 1994. Degradation of 4-chlorophenol y photolytic oxidation, Water Research, Vol.28 (6), page.1323-1328.
  • [13] Masten, S.J., Davies, S.H.R. 1994. The use of ozonation to degrade organic contaminants in wastewaters, Env.Sci.Technol. Vol.28 (1), page.180A- 185A.
  • [14] Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B. 1988. Critical review of data constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solutions, J. Phys. Chem. Ref. Data, Vol.17(2), page.513-586.
  • [15] Legrini, O., Oliveros, E., Braun, A.M. 1993. Photochemical processes for water treatment, Chem. Rew. Vol.93 (2), page.671-698.
  • [16] Rule, K.L., Ebbett, V.R., Vikesland, P.J. 2005. Formation of chloroform and chlorinated organics by freechlorine-mediated oxidation of triclosan, Environ. Sci. Technol. Vol.39, page. 3176-3185.
  • [17] Boza, A., De la Cruz, Y., Jordan, G., Jauregui-Haza, U., Aleman, A., Caraballo, I. 2000. Statistical optimization of a sustained-release matrix tablet of lobenzarit disodium, Drug Dev Ind Pharm. Vol.26, page.1303-1307.
  • [18] Box, G.E.P., Wilson, K.B. 1951. On the experimental attainment of optimum multifactorial conditions, Royal Statistics Society, Vol.13, page.1-12.
  • [19] Singh, S.K., Dodge, J., Durrani, M.J., Khan, M.A. 1995. Optimization and characterization of controlled release pellets coated with experimental latex: I. Anionic drug, Int J Pharm. Vol.125, page.243-255.
  • [20] Sanchez-Lafuente, C., Furlanetto, S., Fernandez-Arevalo, M. 2002. Didanosine extended-release matrix tablets: optimization of formulation variables using statistical experimental design, Int J Pharm. Vol.237, page.107-118.
  • [21] Ragonese, R., Macka, M., Hughes, J., Petocz, P. 2002. The use of the BoxBehnken experimental design in the optimisation and robustness testing of a capillary electrophoresis method for the analysis of ethambutol hydrochloride in a pharmaceutical formulation, J Pharm Biomed Anal. Vol.27, page.995-1007.
  • [22] Sastry, S.V., Khan, M.A. 1998. Aqueous based polymeric dispersion: PlackettBurman design for screening of formulation variables of atenolol gastrointestinal therapeutic system, Pharm Acta Helv. Vol.73, page.105-112.
  • [23] Hamed, E., Sakr, A. 2001. Application of multiple response optimization technique to extended release formulations design, J Control Release, Vol.73, page.329-338.
  • [24] Hsueh, C.L., Huang, Y.H., Wang, C.C., Chen, C.Y. 2005. Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system, Chemosphere, Vol.58, page.1409-1414.
  • [25] Charles, R.H., Kennneth, Jr V.T. 1999. Fundamental concepts in the design of experiments, Oxford: University Press.
  • [26] Abbasi, A.F., Ahmad, M., Wasim, M. 1987. Optimization of concrete mix proportioning using reduced factorial experimental technique, ACI Mater J January-February, page.55-63.
  • [27] Glaze, W. H., Kang, J. & Lay, Y. 1995. Advanced oxidation processes. A kinetic model for the oxidation of 1,2-dibromo- 3-chloropropane in water by the combination of hydrogen peroxide and UV radiation, Industrial Engineering Chemistry Research, Vol. 34 (7), page. 2314-2323.