Amidoksimleştirilmiş Yarı-IPN ile Sulu Çözeltiden Pb2+ Giderimi

Bu araştırmanın konusu amidoksimleştirilmiş yarı-içiçe geçmiş ağ yapılı polimerik adsorbanın (y-IPNa) sulu çözeltiden Pb2+ uzaklaştırmada kullanımıdır. Y-IPNa, Poli (etilen glikol)’ün akrilonitrildeki çözeltisinin 60Co γ-kaynağıyla 14 kGy dozda ışınlanmasıyla hazırlanan yarı-iç içe geçmiş ağ yapıdaki (y-IPN)        –CN uçlarının amidoksimleştirilmesiyle hazırlanmıştır. y-IPN ve y-IPNa yapıları, FT-IR, TGA ve SEM analizleri ile karakterize edilmiştir. y-IPNa’nın adsorban özellikleri Pb2+ adsorpsiyonun pH, derişim, kütle, zaman ve sıcaklık ile değişimi araştırmalarıyla değerlendirilmiştir. 25-2000 ppm başlangıç derişimi aralığında adsorpsiyon izotermleri elde edilmiş, 500-2000 ppm aralığında %60’a ulaşan adsorpsiyon gözlenmiştir. Langmuir adsorpsiyon izoterminden elde edilen maksimum adsorpsiyon kapasitesi XL=678 mg g-1’dir. Adsorpsiyon kinetiğinin yalancı ikinci derece tepkime kinetiğine uyduğu gözlenmiş ve yarı ömür 176 dk olarak hesaplanmıştır. Adsorpsiyonun sıcaklıkla değişiminden elde edilen termodinamik veriler (ΔH=59.3 kJ mol-1, ΔS=246.1 J mol-1 K-1,     ΔG=-14.0 kJ mol-1) adsorpsiyonun endotermik ve kendiliğinden olduğunu göstermiştir. Eş molar Al3+ iyonu varlığında Pb2+ adsorpsiyonunun ≈%60 olduğu gözlendi. Bu sonuç y-IPNa’nın 2+ değerlikli metallere karşı seçici olduğu ile ilgili bir kanıt olabilir.

Pb2+ Removal from Aqueous Solutions by Amidoximized-semi-IPN

The subject of this investigation is the use of amidoximized semi-interpenetrating polymer network polymeric adsorbent (s-IPNa) for removal of Pb2+ from aqueous medium. S-IPNa was prepared from the amidoximation of –CN terminals of the s-IPN obtained by irradiation of Poly (ethylene glycol) in acrylonitrile solution under a dose of 14 kGy with a 60Co gamma source. Semi-interpenetrating polymer networks (s-IPN) and modified s-IPNa structures were characterized by FT-IR, TGA and SEM analysis. The adsorbent properties of s-IPNa were evaluated by investigating the change of Pb2+ adsorption with pH, concentration, mass, time and temperature. Adsorption isotherms were obtained for 25-2000 ppm concentration range, the adsorption reached up to 60% in 500-2000 ppm interval. The maximum adsorption capacity obtained from the Langmuir adsorption isotherm is XL = 678 mg g-1. The adsorption obeyed to pseudo-second order reaction kinetics and half-life was calculated as 176 minutes. Thermodynamics data obtained from the change in adsorption by temperature (ΔH=59.3 kJ mol-1, ΔS=246.1 J mol-1 K-1, ΔG=-14.0 kJ mol-1) demonstrated that adsorption is endothermic and spontaneous. The adsorption of Pb2+ in presence of equimolar Al3+ was ≈%60.  This result might be considered as a proof for the selectivity of s-IPNa for divalent cations.

___

  • [1] Giri, T.K., Verma, D., Tripathi, D.K. 2015. Effect of Adsorption Parameters on Biosorption of Pb++ Ions from Aqueous Solution by Poly (Acrylamide)-Grafted Kappa-Carrageenan, Polymer Bulletin, Cilt 72, s. 1625–1646. DOI: 10.1007/s00289-015-1357-9
  • [2] Fu, F., Wang, Q. 2011. Removal of Heavy Metal Ions from Wastewaters: A Review, Journal of Enviromental Management. Cilt 92, s. 407-18. Doi: 10.1016/j.jenvman.2010.11.011
  • [3] Bailey, S.E., Olin, T., Bricka, R.M., Adrian, D.D. 1999. A Review of Potentially Low-Cost Sorbents for Heavy Metals, Water Research. Cilt. 33, s. 2469-2479
  • [4] Malik, D.S., Jain, C.K., Yadav, A.K. 2017. Removal of Heavy Metals from Emerging Cellulosic Low-Cost Adsorbents: A Review, Applied Water Science, Cilt 7:2113–2136. DOI 10.1007/s13201-016-0401-8
  • [5] Sud, D., Mahajan, G., Kaur, M.P. 2008. Agricultural Waste Material as Potential Adsorbent for Sequestering Heavy Metal Ions from Aqueous Solutions – A review. Bioresource Technology. Cilt 99, s. 6017-6027. Doi:10.1016/j.biortech.2007.11.064
  • [6] Chen, Q., Zhu, L., Zhao, C., Zheng, J. 2012. Hydrogels for Removal of Heavy Metals from Aqueous Solution, Journal of Environmental and Analytical Toxicology, Cilt 2, doi: 10.4172/2161-0525.S2-001.
  • [7] Wu, F.-C., Tseng, R.-L., Juang, R.-S. 2010. A Review and Experimental Verification of Using Chitosan and Its Derivatives as Adsorbents for Selected Heavy Metals. Journal of Environmental Management, Cilt 91. S. 298-806. doi: 10.1016/j.jenvman.2009.10.018
  • [8] Peng, W., Li, H., Liu, Y., Song, S. 2017. A Review on Heavy Metal Ions Adsorption from Water by Graphene Oxide and Its Composites, Journal of Molecular Liquids. Cilt 230. S. 496–504. Doi: 10.1016/j.molliq.2017.01.064
  • [9] Uddin, M.K. 2017. A Review on The Adsorption of Heavy Metals by Clay Minerals, with Special Focus on The Past Decade, Chemical Engineering Journal. Cilt 308. S. 438–462.
  • [10] Sperling, L.H. 1981. Interpenetrating polymer networks and related materials. Softcover reprint of the hardcover 1st edition 1981, SPRINGER SCIENCE & BUSINESS MEDIA. New York NY: Plenum Press; 2012. 265s.
  • [11] Hande, P.E., Kamble, S., Samui, A.B., Kulkarni, P.S. 2016. Chitosan-Based Lead Ion-Imprinted Interpenetrating Polymer Network by Simultaneous Polymerization for Selective Extraction of Lead(II), Industrial and Engineering Chemistry Research. Cilt 55. S. 3668−3678.
  • [12] Li, J., Xu, Z., Wu, W., Jing, Y., Dai, H., Fang, G. 2018. Nanocellulose/Poly(2-(dimethyl amino)ethyl methacrylate) Interpenetrating Polymer Network Hydrogels for Removal of Pb(II) and Cu(II) Ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Cilt 538. S. 474-480.
  • [13] Saeed, K., Haider, S., Oh, T.J., Park, S.Y. 2008. Preparation of Almidoxime-Modified Polyacrylo Nitrile (PAN-Oxime) Nanofibers and Their Applications to Metal Ions Adsorption. Journal of Membran Science. Cilt: 322. S. 400–405. Doi: 10.1016/j.memsci.2008. 05.062
  • [14] Güler, H., Şahiner, N., Ayçık, G.A., Güven, O. 1997. Development of Novel Adsorbent Materials for Recovery and Enrichment of Uranium from Aqueous Media, Journal of Applied Polymer Science. Cilt 66. s. 2475–2480.
  • [15] Şimşek, S., Ulusoy, U., 2012. Uranium and Lead Adsorption onto Bentonite and Zeolite Modified with Polyacrylamidoxime, Journal of Radioanalytical and Nuclear Chemistry. Cilt 292. S. 41–51. DOI 10.1007/s10967-011-1415-1.
  • [16] Nilchi, A., Babalou, A.A., Rafiee, R., Sid Kalal, H. 2008. Adsorption Properties of Amidoxime Resins for Separation of Metal Ions from Aqueous Systems. Reactive & Functional Polymers. Cilt 68. S. 1665–1670.
  • [17] Meghana, D. Vidya Pradhakar, K. 2017. Polyethylene Glycol Conjugates of Paclitaxel as Prodrugs by Simple Technique such as Solvent Evaporation, International Research Journal of Pharmacy, Cilt 8. S. 109-112. Doi: 10.7897/2230-8407.086106
  • [18] Polu, A.R. Kumar R., 2011. Impedance Spectroscopy and FTIR Studies of PEG-Based Polymer Electrolytes, E-Journal of Chemistry, Cilt 8, S. 347-353.
  • [19] Metwally, S. S., Ayoub, R. R., Aly, H. F. 2013. Amidoximation of Cyano Group for Chelating Ion Exchange of Some Heavy Metal Ions From Wastewater. Separation Science and Technology. Cilt 48. S. 1830–1840. DOI:10.1080/01496395.2012.755697
  • [20] Sarier, N., Arat, R., Menceloglu, Y., Önder, E., Boz, E.C., Oguz, O. 2016. Production of PEG Grafted PAN Copolymers and Their Electrospunnanowebs as Novel Thermal Energy Storage Materials. Thermochimica Acta. Cilt 643. S. 83–93. Doi.org/10.1016/j.tca.2016.10.002
  • [21] Pan, W., Sun, Y. Chen, Y. 2012. Preparation of Polyacrylonitrile and Polyethyleneglycol Blend Fibers Through Electrospinning, Optoelectronics and Advanced Materials–Rapid Communications, 6, 1-2, (2012), 230-234.
  • [22] Şahiner, N., Pekel, N., Güven, O. 1999. Radiation Synthesis, Characterization and Amidoximation of N vinyl-2-Pyrrolidone/acrylonitrile Inter-penetrating Polymer Networks, Reactive & Functional Polymers. Cilt 39. S.139–146.
  • [23] Shaaban, A.F., Fadel, D.A., Mahmoud, A.A., Elkomy, M.A., Elbahy, S.M. 2014. Synthesis of A New Chelating Resin Bearing Amidoxime Group for Adsorption of Cu(II), Ni(II) and Pb(II) by Batch and Fixed-Bed Column Methods, Journal of Enviromental Chemical Engineering. Cilt 2. D632–641. http://dx.doi.org/10.1016/j.jece.2013.11.001
  • [24] Saraydın, D., Işıkver, Y., Karadağ, E. 2017. Adsorption of Phenazine Dyes Using Poly(hydroxamic acid) Hydrogels from Aqueous Solutions, Polymer Engineering and Science. DOI 10.1002/pen.24574.
  • [25] Weber, T.W., Chakravot, R.K. 1974. Pore and Solid Diffusion Models for Fixed Bed Adsorbents. American Institute of Chemical Engineers. Cilt 20. S. 228–238.
  • [26] Baybaş, D., Ulusoy, U. 2011. Polyacrylamide–Clinoptilolite/Y-Zeolite Composites: Characterization and Adsorptive Features for Terbium. Journal of Hazardous Materials. Cilt 187. S. 241–249. Doi: 10.1016/j.jhazmat.2011.01.014
  • [27] Chen, S., Shen, W., Yu, F., Wang, H. 2009. Kinetic and Thermodynamic Studies of Adsorption of Cu2+ and Pb2+ onto Amidoximated Bacterial Cellulose, Polymer Bulletin. Cilt 63. S. 283–297. DOI 10.1007/s00289-009-0088-1
  • [28] Elwakeel, K.Z., El-Bindary, A.A., Kouta, E.Y., Guibal, E. 2018. Functionalization of Poly-acrylonitrile/Na-Y-Zeolite Composite with Amidoxime Groups for The Sorption of Cu(II), Cd(II) and Pb(II) Metal Ions, Chemical Engineering Journal. Cilt 332. S. 727-736. Doi: 10.1016/j.cej.2017.09.091
  • [29] Ho, Y.-S. 2006. Review of Second-Order Models for Adsorption Systems, Journal of Hazardous Materials. Cilt B136. S. 681–689. Doi: 10.1016/j.jhazmat.2005.12.043
  • [30] Itodo A.U., ITODO H.U. (2010). Sorption Energies Estimation Using Dubinin-Radushkevich and Temkin Adsorption Isotherms, Life Science Journal, Cilt 7, S: 31-39
  • [31] Dündar, M.Ş., Altundağ, H., Kaygalbudak, S., Şar, V., Acar, A. 2012. Çeşitli Endüstriyel Atık Sularda Ağır Metal Düzeylerinin Belirlenmesi, SAÜ. Fen Bilimleri Dergisi. Cilt 16. S. 6-12.