Farklı Karakteristikli Piezoelektrik Algılayıcıların Dinamik Performanslarının Karşılaştırılması

Günümüzde piezoelektrik malzemeler algılayıcı veya uyarıcı olarak mühendislik uygulamalarında sıklıkla kullanılmaktadır. En yaygın kullanılan piezoelektrik malzeme kurşun-zirkonyum-titanyum (PZT)  piezo seramiktir. Piezo seramikler karakteristik özelliklerine göre yumuşak ve sert olarak iki ana sınıfa ayrılırlar ve PZT-2, PZT-4, PZT-5A, PZT-5H, PZT-8 olarak isimlendirilirler. Bu çalışmada, akıllı bir kirişte farklı karakteristikti piezoelektrik algılayıcının dinamik cevapları sonlu elemanlar yöntemi kullanılarak ANSYS/Workbench programında incelenmiştir. Akıllı kiriş, alüminyum kiriş ile bir piezoelektrik algılayıcı ve bir piezoelektrik uyarıcıdan oluşmuştur. Akıllı kirişte hem uç noktasına tekil kuvvet, hem uyarıcıya voltaj, darbe ve adım girdiler şeklinde uygulanmıştır. Algılayıcı ve yer değiştirme sinyalleri dinamik analiz yapılarak elde edilmiştir. Akıllı kirişin piezoelektrik algılayıcı konumu ve karakteristiğine göre farklı dinamik cevaplar verdiği gözlemlenmiştir.  

Comparison of Dynamic Performance of Piezoelectric Sensors With Different Characteristic

Nowadays, piezoelectric materials have been widely used as a sensor or an actuator in engineering applications. The most commonly used piezoelectric material is lead-zirconate-titanium (PZT) ceramic. According to the characteristics, piezo ceramics are classified into two main classes, soft PZTs and hard PZTs, and they are called as PZT-2, PZT-4, PZT-5A, PZT-5H, PZT-8. In this work, dynamic responses of a piezoelectric sensor with different characteristics of a smart beam were investigated by using the finite element method in ANSYS/Workbench program. The smart beam was composed of an aluminum beam and a PZT sensor and a PZT actuator. Both a single force to the end point and a voltage to the actuator were applied in the smart beam in the form of impulse and step inputs. Sensor and displacement signals were obtained by performing the dynamic analysis. It was observed that the smart beam has varied dynamic responses via the location and characteristic of piezoelectric sensor.

___

  • [1] Loghmani, A., Danesh, M., Keshmiri, M., Savadi, M. M. 2015. Theoretical and Experimental Study of Active Vibration Control of a Cylindrical Shell Using Piezoelectric Disks, Journal of Low Frequency Noise, Vibration and Active Control, Cilt. 34-3, s. 269-288.
  • [2] Dafang, W., Liang, H., Bing, P., Yuewu, W., Shuang, W. 2014. Experimental study and numerical simulation of active vibration control of a highly flexible beam using piezoelectric intelligent material, Aerospace Science and Technology, Cilt. 37(2014), s. 10-19.
  • [3] Yaman, Y., Çalışkan, T., Nalbantoğlu, V., Prasad, E., Waechter, D. 2002. Active vibration control of a smart beam, 6th CanSmart symposium, Montreal.
  • [4] Manning, W. J., Plummer, A. R., Levesley, M. C. 2000. Vibration control of a flexible beam with integrated actuators and sensors, Smart Materials Structures, Cilt. 9, s. 932–9.
  • [5] Kumar, K. R., Narayanan. S. 2008. Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs, Smart Materials Structures, Cilt. 17(2008), 055008. doi:10.1088/0964-726/17/5/055008.
  • [6] Li, F., Lyu, F. 2014. Active vibration control of lattice sandwich beams using the piezoelectric actuator/sensor pairs, Composites: Part B, Cilt. 67(2014), s. 571-578.
  • [7] Zippo, A., Ferrari, G., Amabili, M., Barbieri, M., Pellicano, F. 2015. Active vibration control of a composite sandwich plate, Composite Structures, Cilt. 128(2015), s. 100-114.
  • [8] Malgaca, L. 2010. Integration of Active Vibration Control Methods with Finite Element Models of Smart Laminated Composite Structures. Composite Structures, Cilt. 92(2010), s.1651–1663.
  • [9] Tsushima, N., Su, W. 2017. Flutter suppression for highly flexible wings using passive and active piezoelectric effects, Aerospace Science and Technology, Cilt. 65(2017), s. 78-89.
  • [10] Chopra, I., Sirohi, J. 2013. Smart Structures Theory, Cambridge University Press, New York, USA.
  • [11] Malgaca L., Uyar, M., Yavuz, Ş. 2017. Active vibration suppression of a single-link smart flexible manipulator, International Journal of Natural and Engineering Sciences, Cilt. 11(1), s. 13-19.
  • [12] Vashist, S. K., Chhabra, D. 2014. Optimal placement of piezoelectric actuators on plate structures for active vibration control using genetic algorithm, Proc. SPIE 9057, Active and Passive Smart Structures and Integrated Systems Cilt. 905720, 9 Mart 2014. doi:0.1117/12.2044904;https://doi.org/10.1117/12.2044904.
  • [13] Ferrari, G., Amabili, M. 2015. Active vibration control of a sandwich plate by non-collocated positive position feedback, Journal of Sound and Vibration, Cilt. 342(2015), s. 44-56.
  • [14] Ihn, J., Chang, F. 2004. Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: II. Validation using riveted joints and repair patches, Smart Materials Structures, Cilt. 13 (2004), s. 621–630. doi: 10.1088/0964-1726/13/3/021.
  • [15] Zhao, X., Gao, H., Zhang, G., Ayhan, B., ChimanKwan, F. Y., Rose, J. L. 2007. Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring, Smart Materials Structures, Cilt. 16(2007), s. 1208–1217. doi:10.1088/0964-1726/16/4/032.
  • [16] Cotton, D. P. J., Chappell, P. H., Cranny, A., White, N. M., Beeby, S. B. 2007. A Novel Thick-Film Piezoelectric Slip Sensor for a Prosthetic Hand, IEEE sensors journal, Cilt. 7, no. 5, Mayıs 2007. doi: 10.1109/JSEN.2007.894912.
  • [17] Patil, C. S., Roy, S., Jagtap, K. R. 2017. Damage Detection in Frame Structure Using Piezoelectric Actuator, 5th International Conference of Materials Processing and Characterization (ICMPC 2016), Materials Today: Proceedings, Cilt. 4(2017), s. 687–692.
  • [18] Elshafei, M. A., Alraiess, F. 2013. Modeling and analysis of smart piezoelectric beams using simple higher order shear deformation theory, Smart Materials and Structures, Cilt. 22(2013), s. 035006 (14pp).
  • [19] Park, I., Lee, U. 2012. Dynamic analysis of smart composite beams by using the frequency-domain spectral element method, Journal of Mechanical Science and Technology, Cilt. 26(8), s. 2511-2521.
  • [20] ANSYS Software, 2016. ANSYS, Inc. Erişim Adresi: http://www.ansys.com (Erişim tarihi: 22.08.2016).
  • [21] ABAQUS Software, 2016. ABAQUS UNIFIED FEA. Erişim Adresi: http://www.3ds.com/products-services/simulia/products/abaqus/ (Erişim Tarihi:22.08.2016).
  • [22] Preumont, A. 2011. Vibration Control of Active Structures: An Introduction, Springer Netherlands.
  • [23] Morgan Company, 2016. Products, Erişim Adresi: http://www.morgantechnicalceramics.com/ (Erişim Tarihi: 22.08.2016)
  • [24] Braunt, I., Coffignal, G., Lene, F. 2001, A methodology for determination of piezoelectric actuator and sensor location on beam structures, Journal of Sound and Vibration, Cilt. 5(2001), s. 861-882. doi:10.1006/jsvi.2000.3448.
  • [25] Yousefi-Koma, A. 1997. Active vibration control of smart structures using piezo elements, PhD Thesis, Carleton University, Ottawa, Ontario.
  • [26] Xu, S. X., Koko, T. S. 2002. Finite element analysis and design of actively controlled piezoelectric smart structures, Finite Element Analysis and Design, Cilt. 40(2004), s. 241–62.