A PROSPECT ON INTEGRATİON OF SOLAR TECHNOLOGY TO MODERN GREENHOUSES

tehditler göz önüne alındığında, tarımsal ihtiyaç geleneksel tarımla tedarik edilemediği görülmektedir. Bu noktada modern seralar çekici bir alternatif durumundadır. Sera sistemlerinin yüksek enerji tüketimi, sürdürülebilir üretim için büyük bir engel teşkil entegrasyonu ile fosil yakıtlara bağımlılığın azaltılması ve seracılık faaliyetlerinin yaygınlaştırılması amaçlanmaktadır. Bu çalışmada modern seralarda uygulanan güneş enerjisi teknolojisi üzerine bir inceleme yapılmıştır. Bu çalışmada; esas olarak fotovoltaik (FV) modüller, CSP ve hibrid FV / T sistemi gibi yenilenebilir ve sürdürülebilir temelli çözümlerden oluşan güneş teknolojilerinin modern seralarda uygulamaları gözden geçirilmiştir. Ayrıca modern seralara uygulanan güneş enerjisi teknolojisinin avantajları belirlenmiştir

GÜNEŞ ENERJISI TEKNOLOJISININ MODERN SERALARA ENTEGRASYONU ÜZERINE BIR İNCELEME

The demand for food products is increasing with the growing world population day by day. Given the environmental and land deterioration, agricultural requirement cannot be supply with conventional agriculture. At this point modern greenhouses are attractive alternatives. The high energy consumption of greenhouse systems is a major obstacle to sustainable production. With integration of solar technology to modern greenhouses is aimed to reduce dependence on fossil fuels and expanding the greenhouse in places where greenhouse activities are not carried out. In this study, the current state of solar technology applied in the modern greenhouses has been examined. This study reviews the modern solar greenhouse application technologies which are mainly renewable and sustainable based solutions such as photovoltaic (PV) modules, CSP and hybrid PV/T system. Also, it is summarized what purpose these technologies are used for in the greenhouse. In addition, advantages of solar technology applied to modern greenhouses have been determined. Güneş Enerjisi Teknolojisinin Modern Seralara Entegrasyonu Üzerine Bir İnceleme

___

  • [1] Wang, T., Wu, G., Chen, J., Cui, P., Chen, Z., Yan, Y., Zhang, Y., Li, M., Niu, D., Li, B., Chen, H. 2017. Integration of Solar Technology to Modern Greenhouse in China: Current Status, Challenges and Prospect, Renewable and Sustainable Energy Reviews, Cilt. 70, s. 1178–1188.
  • [2] Nicholls, C., Altieri, M. 2012. Plant Biodiversity Enhances bees and Other Insect Pollinators in Agroecosystems - A Review, Agronomy for a Sustainable Development, Cilt. 33, s. 257–274.
  • [3] Yano, A., Onoe, M., Nakata, J. 2014. Prototype Semi-Transparent Photovoltaic Modules for Greenhouse Roof Applications, Biosystems Engineering, Cilt. 122, s. 62-73.
  • [4] Manitoba, Greenhouse Energy Calculations: A Cost Comparison of Different Energy Sources for Heating A Greenhouse, https://www.gov.mb.ca/agricultur e/crops/production/print,energycalculations.html (Accessed:14.04 2017)
  • [5] Emam Hassanien, R.H., Li, M., Lin, W.W. 2016. Advanced Applications of Solar Energy in Agricultural Greenhouses, Renewable and Sustainable Energy Reviews, Cilt. 54, s. 989–1001.
  • [6] Canakci, M., Emekli, N.Y., Bilgin, S., Caglayan, N. 2013. Heating Requirement and Its Costs in Greenhouse Structures: A Case Study for Mediterranean Region of Turkey, Renewable and Sustainable Energy Reviews, Cilt. 26, s. 483-490.
  • [7] Tong, Y., Kozai, T., Nishioka, N., Ohyama., K. 2012. Reductions in Energy Consumption and CO2 Emissions for Greenhouses Heated with Heat Pumps, Trans ASABE, Cilt. 28, s. 401-406. DOI:: 10.13031/2013.41488
  • [8] The Greenhouses of Almeria. 2013.http://www.amusingplanet.c om/2013/08/the-greenhouses-ofalmeria.html (Accessed:14.04. 2017)
  • [9] Marucci, A., Gusman, A., Pagniello, B., and Cappuccini, A. 2013. Solar Radiation Inside Greenhouses Covered with Semitransparent Photovoltaic Film: First Experimental Results, Journal of Agricultural Engineering, s. 44-49. DOI: 10.4081/jae.2013.s2.e49
  • [10] Marucci, A., Monarca, D., Cecchini, M., Colantoni, A., Manzo, A., Cappuccini, A. 2012. The Semitransparent Photovoltaic Films for Mediterranean Greenhouse: A New Sustainable Technology, Mathematical Problems in Engineering, Cilt. 2012, s. 14. http://dx.doi.org/10.1155/2012/4 51934
  • [11] Xue, J. 2017. Photovoltaic Agriculture - New Opportunity for Photovoltaic Applications in China, Renewable and Sustainable Energy Reviews, Cilt. 73, s. 1-9. [12] Renewable Energy Policy Network for the 21st Century. 2016. http://www.ren21.net/wpcontent/uploads/2016/10/REN21 _GSR2016_FullReport_en_11.pdf (Accessed: 10.04. 2017)
  • [13] Kadowaki, M., Yano, A., Ishizu, F., Tanaka, T., Noda, S. 2012. Effects of Greenhouse Photovoltaic Array Shading On Welsh Onion Growth, Biosystems Engineering, Cilt. 111, s. 290-297.
  • [14] Ureña-Sánchez, R., Callejón-Ferre, ÁJ., Pérez-Alonso, J., and CarreñoOrtega, Á. 2012. Greenhouse tomato production with electricity generation by roof-mounted flexible solar panels, Scientia Agricola, Cilt. 69, s. 233–9. http://dx.doi.org/10.1590/S0103- 90162012000400001 (Accessed April 10, 2017)
  • [15] Yano, A., Kadowaki, M., Furue, A., Tamaki, N., Tanaka, T., Hiraki, E., Kato, Y., Ishizu, F., Noda, S. 2010. Shading and Electrical Features of a Photovoltaic Array Mounted Inside the Roof of an Eastewest Oriented Greenhouse, Biosystems Engineering, Cilt. 106, s. 367-377.
  • [16] Cossu, M., Murgia, L., Ledda, L., Deligios, P.A., Sirigu, A., Chessa, F., and Pazzona, A. 2014. Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity, Applied Energy, Cilt. 133, s. 89–100.
  • [17] Cuce, E., Harjunowibowo. D., and Mert Cuce, P. 2016. Renewable and Sustainable Energy Saving Strategies for Greenhouse Systems: A Comprehensive Review, Renewable and Sustainable Energy Reviews, Cilt. 64, s. 34–59.
  • [18] Lovegrove, K., Stein, W. 2012. Concentrating Solar Power Technology Principles, Developments and Applications, USA: Woodhead Publishing Limited, 704s.
  • [19] Fuqiang, W., Ziming, C., Jianyu, T., Yuan, Y., Yong, S., Linhua, L. 2017. Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review, Renewable and Sustainable Energy Reviews, Cilt. 79, s. 1314-1328.
  • [20] Goswami, D.Y., Kreith, F. 2007. Handbook of Energy Efficiency and Renewable Energy, Taylor & Francis Group, LLC, 1560s.
  • [21] Lorenzini, G., Biserni, C., Flacco, G. 2010. Solar Thermal and Biomass Energy, UK: WIT Press, 224s.
  • [22] Kumar, A., Prakash, O., Dube, A. 2017. A review on progress of concentrated solar power in India, Renewable and Sustainable Energy Reviews, Cilt. 79, s. 304-307.
  • [23] Sonneveld, P.J., Swinkels, G.L.A.M., van Tuijl, B.A.J., Janssen, H.J.J, Campen, J., Bot, G.P.A. 2011. Performance of A Concentrated Photovoltaic Energy System with Static Linear Fresnel Lenses, Solar Energy, Cilt. 85, s. 432–442.
  • [24] AALBORG CSP. 2017. http://www.aalborgcsp.com/proje cts/integrated-energy-systembased-on-csp-australia (Accessed: 17.04. 2017)